Tag Archives: Big Bang

The First Billion Years

When we think about the Big Bang we tend only to look at the first few instants when we think all of the mysterious and exciting action occurred. But actually, the first BILLION years are the real stars of this story!

My books ‘Eternity:A Users Guide’ and ‘Cosmic History I and II’ provide a more thorough, and ‘twitterized’, timeline of the universe from the Big Bang to the literal end of time if you are interested in the whole story as we know it today. You can also look at a massive computer simulation developed by Harvard and MIT cosmologists in 2014.

What we understand today is not merely based on theoretical expectations. Thanks to specific observations during the last decade, we have actually discovered distant objects that help us probe critical moments during this span of time.

Infancy

By the end of the first 10 minutes after the Big Bang, the universe was filled with a cooling plasma of hydrogen and helium nuclei and electrons – too hot to come together to form neutral atoms at seething temperatures over 100 million Celsius. The traces that we do see of the fireball light from the Big Bang are called the cosmic background radiation, and astronomers have been studying it since the 1960s. Today, the temperature is 2.726 kelvins, but at one part in 100,000 there are irregularities in its temperature across the entire sky detected by the COBE, WMAP and Planck satellites and shown below. These irregularities are the gravitational fingerprints of vast clusters of galaxies that formed in the infant universe after several more billion years.

By 379,000 years, matter had cooled down to the point where electrons could bond with atomic nuclei to form neutral atoms of hydrogen and helium. For the first time in cosmic history, matter could go its own way and no longer be affected by the fireball radiation, which used to blast these assembled atoms apart faster than they could form. If you were living at this time, it would look like you were standing inside the surface of a vast dull-red star steadily fading to black as the universe continued to expand, and the gas steadily cooled over the millennia. No matter where you stood in the universe at this time, all you would see around you is  this dull-red glow across the sky.

6 million years – By this time, the cosmic gas has cooled to the point that its temperature was only 500 kelvins (440 F). At these temperatures, it no longer emits any  visible light. The universe is now fully in what astronomers call The Cosmic Dark Ages. If you were there and looking around, you would see nothing but an inky blackness no matter where you looked! With infrared eyes, however, you would see the cosmos filled by a glow spanning the entire sky.

20 million years – The hydrogen-helium gas that exists all across the universe is starting to feel the gravity effects of dark matter, which has started to form large clumps and vast spiders-web-like networks spanning the entire cosmos, with a mass of several trillion times the mass of our sun. As the cold, primordial gas falls into these gravity wells, it forms what will later become the halos of modern-day galaxies. All of this hidden under a cloak of complete darkness because there was as yet no physical objects in existence to light things up. Only detailed supercomputer simulations can reveal what occurred during this time.

The First Stars

100 million years – Once the universe got cold enough, large gas clouds stopped being controlled by their internal pressure, and gravity started to take the upper hand. First the vast collections of matter destined to become the haloes of galaxies formed. Then, or at about the same time, the first generation of stars appeared in the universe. These Population III stars made from nearly transparent hydrogen and helium gas were so massive, they lived for only a few million years before detonating as supernova. As the universe becomes polluted with heavier elements from billions of supernovae, collapsing clouds become more opaque to their own radiation, and so the collapse process stops when much less matter has formed into the infant stars. Instead of only producing massive Population III stars with 100 times our sun’s mass, numerous stars with masses of 50, 20 and 5 times our sun’s form with increasing frequency. Even smaller stars like our own sun begin to appear by the trillions. Most of this activity is occurring in what will eventually become the halo stars in modern galaxies like the Milky Way. The vast networks of dark matter became illuminated from within as stars and galaxies began to form.

200 million years – The oldest known star in our Milky Way called SM0313 formed about this time. This star contains almost no iron — less than one ten millionth of the iron found in our own Sun. It is located 6000 light years from Earth. Another star called the Methusela Star is located about 190 light years from Earth and was formed about the same time as SM0313.

The First Quasars and Black Holes

300 million years The most distant known ‘quasar’ is called APM 8279+5255, and contains traces of the element iron. This means that at about this time after the Big Bang, some objects are powered by  enormous black holes that steadily consume a surrounding disk of gas and dust. For APM 8279+5255, the mass of this black hole is about 20 billion times more massive than the Sun. Astronomers do not know how a black hole this massive could gave formed so soon after the Big Bang. A dimple division shows that a 20 billion solar mass black hole forming in 300 million years would require a growth rate higher than 60 solar masses a year!

The First Galaxies

400 million years – The cold primordial matter becomes clumpy under the action of its own gravity. These clumps have masses of perhaps a few billion times our sun or less, and over time this material starts to collapse locally into even smaller clouds that become mini-galaxies where intense episodes of star formation activity are playing out.

This image shows the position of the most distant galaxy discovered so far with the Hubble Space Telescope. The remote galaxy GN-z11 shown in the inset is actually ablaze with bright young blue stars. They look red in this image because the wavelengths of light have been stretched by the expansion of the universe to longer, redder wavelengths. Like the images of so many other young galaxies, we cannot see individual stars, but their irregular shapes show that the stars they contain are spread out in irregular clumps within their host galaxy, possibly because they are from separate, merging clouds whose collisions have triggered the star-forming activity we see.

Although it is hard work, astronomers can detect the faint reddish traces of dozens of other infant galaxies such as MACS0647-JD, UDFj-39546284 and EGSY-2008532660. These are all  small dwarf galaxies over 100 times less massive than our Milky Way. They are all undergoing intense star forming activity between 400 and 600 million years after the Big Bang.

The Gamma-Ray Burst Era begins about 630 million years after the Big Bang. Gamma-ray bursts are caused by very massive stars, perhaps 50 to 100 times our own sun’s mass, that explode as hypernovae and form a single black hole, so we know that these kinds of stars were already forming and dying by this time. Today from ‘across the universe’ we see these events occur about once each day!

800 million years – The quasar ULAS J1120+0641 is another young case of a supermassive black hole that has formed, and by this time is eating its surrounding gas and stars at a prodigious rate. The mass of this black hole is about 2 billion times the mass of our sun, and like others is probably the result of frequent galaxy mergers and rapid eating of surrounding matter.

Also at around this time we encounter the Himiko Lyman Alpha Blob; one of the most massive objects ever discovered in the early universe.  It is 55,000 light-years across, which is half of the diameter of the Milky Way. Objects like Himiko are probably powered by an embedded galaxy that is producing young massive stars at a phenomenal rate of 500 solar masses per year or more.

Again the most brilliant objects we can see from a time about 900 million years after the big bang includes galaxies like SDSS J0100+2802 with a luminosity 420 trillion times that of our own Sun. It is powered by a supermassive black hole  12 billion times the mass of our sun.

The Re-Ionization Era

960 million years – By this time, massive stars in what astronomers call ‘Population III’ are being born by the billions across the entire universe. These massive stars emit almost all of their light in the ultraviolet part of the visible spectrum. There are now so many intense sources of ultraviolet radiation in the universe that all of the remaining hydrogen gas becomes ionized. Astronomers call this the Reionization Era. Within a few hundred million years, only dwarf galaxy-sized blobs of gas still remain and are being quickly evaporated. We can still see the ghosts of these clouds in the light from very distant galaxies. The galaxy SSA22-HCM1 is the brightest of the objects called ‘Lyman-alpha emitters’. It may be producing new stars at a rate of 40 solar masses per year and enormous amounts of ultraviolet light. The galaxy HDF 4-473.0 also spotted at this age is only 7,000 light years across. It has an estimated star formation rate of 13 solar masses per year.

1 billion years First by twos and threes, then by dozens and hundreds, clusters of galaxies begin to form as the gravity of matter pulls the clumps of galaxy-forming matter together. This clustering is speeded up by the additional gravity provided by dark matter. In a universe without dark matter, the number of clusters of galaxies would be dramatically smaller.

Clusters of Galaxies Form

Proto-galaxy cluster AZTEC-3 consists of 5 smaller galaxy-like clumps of matter, each forming stars at a prodigious rate. We now begin to see how some of the small clumps in this cluster are falling together and interacting, eventually to become a larger galaxy-sized system. This process of cluster formation is now beginning in earnest as more and more of these ancient clumps fall together under a widening umbrella of gravity. Astronomers are discovering more objects like AzTEC-3, which is the most distant known progenitor to modern elliptical galaxies. By 2.2 billion years after the Big Bang, it appears that half of all the massive elliptical galaxies we see around us today have already formed by this time.

Thanks to the birth and violent deaths of generations of massive Population III stars, the universe is now flooded with heavy elements such as iron, oxygen, carbon and nitrogen: The building blocks for life. But also elements like silicon, iron and uranium which help to build rocky planets and heat their interiors. The light from the quasar J033829.31+002156.3 can be studied in detail and shows that by this time, element-building through supernova explosions of Population III stars has produced lots of carbon, nitrogen and silicon. The earliest planets and life forms based upon these elements now have a chance to appear in the universe. Amazingly, we have already spotted such an ancient world!

Earliest Planets Form

At 1 billion years after the Big Bang, the oldest known planet PSR B1620-26 b has already formed. Located in the globular cluster Messier-4, about 12,400 light-years from Earth, it bears the unofficial nicknames “Methuselah” and “The Genesis Planet” because of its extreme age. The planet is in orbit around the two very old stars: A dense white dwarf and a neutron star. The planet has a mass of 2.5 times that of Jupiter, and orbits at a distance a little greater than the distance between Uranus and our own Sun. Each orbit of the planet takes about 100 years.

Wonders to Come!

Although the Hubble Space Telescope strains at its capabilities to see objects at this early stage in cosmic history, the launch of NASA’s Webb Space Telescope will uncover not dozens but thousands of these young pre-galactic objects with its optimized design. Within the next decade, we will have a virtually complete understanding of what happened during and after the Cosmic Dark Ages when the earliest possible sources of light could have formed, and one can only marvel at what new discoveries will turn up.

What an amazing time in which to be alive!

Check back here on Wednesday, May 24 for my next topic!

Our Unstable Universe

Something weird is going on in the universe that is causing astronomers and physicists to lose a bit of sleep at night. You have probably heard about the discovery of dark energy and the accelerating expansion of the universe. This is a sign that something is afoot that may not have a pleasant outcome for our universe or the life in it.

Big Bang Cosmology V 1.0

The basic idea is that our universe has been steadily expanding in scale since 14 billion years ago when it flashed into existence in an inconceivably dense and hot explosion. Today we can look around us and see this expansion as the constantly- increasing distances between galaxies embedded in space. Astronomers measure this change in terms of a single number called the Hubble Constant which has a value of about 70 km/sec per megaparsecs. For every million parsecs of separation between galaxies, a distance of 3.24 million light years, you will see distant galaxies speeding away from each other at 70 km/sec . This conventional Big Bang theory has been the main-stay of cosmology for decades and it has helped explain everything from the formation of galaxies to the abundance of hydrogen and helium in the universe.

Big Bang Cosmology V 2.0

Beginning in the 1980’s, physicists such as Alan Guth and Andre Linde added some new physics to the Big Bang based on cutting-edge ideas in theoretical physics. For a decade, physicists had been working on ways to unify the three forces in nature: electromagnetism, and the strong and weak nuclear forces. This led to the idea that just as the Higgs Field was needed to make the electromagnetic and weak forces look different rather than behave as nearly identical ‘electroweak’ forces, the strong force needed its own ‘scalar field’ field to break its symmetry with the electroweak force.

When Guth and Linde added this field to the equations of Big Bang cosmology they made a dramatic discovery. As the universe expanded and cooled, for a brief time this new scalar field made the transition between a state where it allowed the electroweak and strong forces to look identical, and a state where this symmetry was broken representing the current state of affairs. This period of time extended from about 10(-37) second to 10(-35) seconds; a mere instant in cosmic time, but the impact of this event was spectacular. Instead of the universe expanding at a steady rate in time as it does now, the separations between particles increased exponentially in time in a process called Inflation. Physicists now had a proper name for this scalar field: The Inflaton Field.

Observational cosmology has been able to verify since the 1990s that the universe did, indeed, pass through such an inflationary era at about the calculated time. The expansion of space at a rate many trillions of times faster than the speed of light insured that we live in a universe that looks as ours does, especially in terms of the uniformity of the cosmic ‘fireball’ temperature. It’s 2.7 kelvins no matter where you look, which would have been impossible had the Inflationary Era not existed.

Physicists consider the vacuum of space to be more than ‘nothing’. Quantum mechanically, it is filled by a patina of particles that invisibly come and go, and by fields that can give it a net energy. The presence of the Inflaton Field gave our universe a range of possible vacuum energies depending on how the field interacted with itself. As with other things in nature, objects in a high-energy state will evolve to occupy a lower-energy state. Physicists call the higher-energy state the False Vacuum and the lower-energy state the True Vacuum, and there is a specific way that our universe would have made this change. Before Inflation, our universe was in a high-energy, False Vacuum state governed by the Inflaton Field. As the universe continued to expand and cool, a lower-energy state for this field was revealed in the physics, but the particles and fields in our universe could not instantaneously go into that lower-energy state. As time went on, the difference in energy between the initial False Vacuum and the True Vacuum continued to increase. Like bubbles in a soda, small parts of the universe began to make this transition so that we now had a vast area of the universe in a False Vacuum in which bubbles of space in the True Vacuum began to appear. But there was another important process going on as well.

When you examine how this transition from False to True Vacuum occurred in Einstein’s equations that described Big Bang cosmology, a universe in which the False Vacuum existed was an exponentially expanding space, while the space inside the True Vacuum bubbles was only expanding at a simple, constant rate defined by Hubble’s Constant. So at the time of inflation, we have to think of the universe as a patina of True Vacuum bubbles embedded in an exponentially-expanding space still caught in the False Vacuum. What this means for us today is that we are living inside one of these True Vacuum bubbles where everything looks about the same and uniform, but out there beyond our visible universe horizon some 14 billion light years away, we eventually enter that exponentially-expanding False Vacuum universe. Our own little bubble may actually be billions of times bigger than what we can see around us. It also means that we will never be able to see what these other distant bubbles look like because they are expanding away from us at many times the speed of light.

Big Bang Cosmology 3.0

You may have heard of Dark Energy and what astronomers have detected as the accelerating expansion of the universe. By looking at distant supernova, we can detect that since 6 billion years after the Big Bang, our universe has not been expanding at a steady rate at all. The separations between galaxies has been increasing at an exponential rate. This is caused by Dark Energy, which is present in every cubic meter of space .The more space there is as the universe expands, the more Dark Energy and the faster the universe expands. What this means is that we are living in a False Vacuum state today in which a new Inflaton Field is causing space to dilate exponentially. It doesn’t seem too uncomfortable for us right now, but the longer this state persists, the greater is the probability our corner of the universe will see a ‘bubble’ of the new True Vacuum appear. Inside this bubble there will be slightly different physics such as the mass of the electron or the quark may be different. We don’t know when our corner of the universe will switch over to its True Vacuum state. It could be tomorrow or 100 billion years from now. But there is one thing we do know about this progressive, accelerated expansion.

Eventually, distant galaxies will be receding from our Milky Way at faster that the speed of light as they are helplessly carried along by a monstrously-dilating space. This also means they will become permanently invisible for the rest of eternity as their light signals never keep pace with the exponentially-increasing space between them. Meanwhile, our Milky Way will become the only cosmic collection of matter we will ever be able to see from then on. It is predicted that this situation will occur about 100 billion years from now when the Andromeda Galaxy will pass beyond this distant horizon.

As for what the new physics will be in the future True Vacuum state is anyone’s guess. If the difference in energy between the False and True vacuum is only a small fraction of the mass of a neutrino (a few electron-Volts) we may hardly know that it happened and life will continue. But if it is comparable to the mass of the electron (512,000 eV), we are in for some devastating and fatal surprises best not contemplated.

Check back here on  Tuesday, May 16  for my next topic!

Boltzmann Brains

Back in the 1800’s, Ludwig Boltzmann (1844-1906) developed the idea of entropy and thermodynamics, which have been the main-stay of chemistry and physics ever since. Long before atoms were identified, Boltzmann had used them in designing his theory of statistical mechanics, which related entropy to the number of possible statistical states these particles could occupy. His famous formula

S = k log W

is even inscribed on his tombstone! His frustrations with the anti-atomists who hated his crowning achievement ‘statistical mechanics’ led him in profound despair to commit suicide in 1906.

If you flip a coin 4 times, it is unlikely that all 4 flips will result in all-heads or all-tails. It is far more likely that you will get a mixture of heads and tails. This is a result of their being a total of 2^4 = 16 possible outcomes or ‘states’ for this system, and the state with all heads or all tails occur only 1/16 of the time. Most of the states you will produce have a mixture of heads and tails (14/16). Now replace the coin flips by the movement of a set of particles in three dimensions.

Boltzmann’s statistical mechanics related the number of possible states for N particles moving in 3-dimensional space, to the entropy of the system. It is more difficult to calculate the number of states than for the coin flip example above, but it can be done using his mathematics, and the result is the ‘W’ in his equation S = k Log W. The bottom line is that, the more states available to a collection of particles (for example atoms of a gas), the higher is the entropy given by . How does a gas access more states? One way is for you to turn up its temperature so that the particles are moving faster. This means that as you increase the temperature of a gas, its entropy increases in a measurable way.

Cosmologically, as our universe expands and cools, its entropy is actually increasing steadily because more and more space is available for the particles to occupy even as they are moving more slowly as the temperature declines. The Big Bang event itself, even at its unimaginably high temperature was actually a state of very low entropy because even though [particles were moving near the speed of light, there was so little space for matter to occupy!

For random particles in a gas colliding like billiard balls, with no other organizing forces acting on them, (called the kinetic theory of gases), we can imagine a collection of 100 red particles clustered in one corner of a box, and 1000 other blue particles located elsewhere in the box. If we were to stumble on a box of 1100 particles that looked like this we would immediately say ‘how odd’ because we sense that as the particles jostled around the 100 red particles would quickly get uniformly spread out inside the box. This is an expression of their being far more available states where the red balls are uniformly mixed, than states where they are clustered together. This is also a statement that the clustered red balls is a lower-entropy version of the system, and the uniformly-mixed version is a higher form of entropy. So we would expect that the system evolves from lower to higher entropy as the red particles diffuse through the box: Called the Second Law of Thermodynamics.

Boltzmann Brains.

The problem is that given enough time, even very rare states can have a non-zero probability of happening. With enough time and enough jostling, we could randomly find the red balls once again clustered together. It may take billions of years but there is nothing that stands in the way of this happening from statistical principles. Now let’s suppose that instead of just a collection of red balls, we have a large enough system of particles that some rare states resemble any physical object you can imagine: a bacterium, a cell phone, a car…even a human brain!

A human brain is a collection of particles organized in a specific way to function and to store memories. In a sufficiently large and old universe, there is no obvious reason why such a brain could not just randomly assemble itself like the 100 red particles in the above box. It would be sentient, have memories and even senses. None of its memories would be of actual events it experienced but simply artificial reconstructions created by just the right neural pathways randomly assembled. It would remember an entire lifetime to date without having actually lived or occupied any of the events in space and time.

When you calculate the probability for such a brain to evolve naturally in a low-entropy universe like ours rather than just randomly assembling itself you run into a problem. According to Boltzmann’s cosmology, our vast low-entropy and seemingly highly organized universe is embedded in a much larger universe where the entropy is much higher. It is far less likely that our organized universe exists in such a low entropy state conducive to organic evolution than a universe where a sentient brain simply assembles itself from random collisions. In any universe destined to last for eternity, it will rapidly be populated by incorporeal brains rather than actual sentient creatures! This is the Paradox of the Boltzmann Brain.

Even though Creationists like to invoke the Second Law to deny evolution as a process of random collisions, the consequence of this random idea about structure in the universe says that we are actually all Boltzmann Brains not assembled by evolution at all. It is, however, of no comfort to those who believe in God because God was not involved in randomly assembling these brains, complete with their own memories!

So how do we avoid filling our universe with the abomination of these incorporeal Boltzman Brains?

The Paradox Resolved

First of all, we do not live in Boltzmann’s universe. Instead of an eternally static system existing in a finite space, direct observations show that we live in an expanding universe of declining density and steadily increasing entropy.

Secondly, it isn’t just random collisions that dictate the assembly of matter (a common idea used by Creationists to dismantle evolution) but a collection of specific underlying forces and fundamental particles that do not come together randomly but in a process that is microscopically determined by specific laws and patterns. The creation of certain simple structures leads through chemical processes to the inexorable creation of others. We have long-range forces like gravity and electromagnetism that non-randomly organize matter over many different scales in space and time.

Third, we do not live in a universe dominated by random statistical processes, but one in which we find regularity in composition and physical law spanning scales from the microscopic to the cosmic, all the way out to the edges of the visible universe. When two particles combine, they can stick together through chemical forces and grow in numbers from either electromagnetic or gravitational forces attracting other particles to the growing cluster, called a nucleation site.

Fourth, quantum processes and gravitational processes dictate that all existing particles will eventually decay or be consumed in black holes, which will evaporate to destroy all but the most elementary particles such as electrons, neutrinos and photons; none of which can be assembled into brains and neurons.

The result is that Boltzmann Brains could not exist in our universe, and will not exist even in the eternal future as the cosmos becomes more rarefied and reaches its final and absolute thermodynamic equilibrium.

The accelerated expansion of the universe now in progress will also insure that eventually all complex collections of matter are shattered into individual fundamental particles each adrift in its own expanding and utterly empty universe!

Have a nice day!

Check back here on Tuesday, May 9 for my next topic!

Is Infinity Real?

In the daytime, you are surrounded by trees, buildings and the all-too-familiar accoutrements of Nature, to which by evolution we were designed to appreciate and be familiar. But at night, we see an unimaginably different view: The dark, starry night sky, with no sense of perspective or depth. It is easy to understand how The Ancients thought it a celestial ceiling with pinpoint lights arrayed in noteworthy patterns. Many millennia of campfires were spent trying to figure it out.

We are stuck in the middle ground between two vast scales that stretch before us and within us. Both, we are told, lead to the infinitely-large and the infinitely-small. But is this really true?

Astronomically, we can detect objects that emerged from the Big Bang nearly 14 billion years ago, which means their light-travel distance from us is 14 billion light years or 13,000,000,000,000,000,000,000,000,000 centimeters. This is, admittedly, a big number but it is not infinitely-large.

In the microcosm, we have probed the structure of electrons to a scale of 0.000000000000000000001 centimeters and found no signs of any smaller distance yet. So again, there is no sign that we have reached anything like an infinitely-small limit to Nature either.

When it comes right down to it, the only evidence we have for the universe being infinitely large (or other aspects of it being infinitely small) is in the mathematics and geometry we use to describe it. Given that infinity is the largest number you can count to, it is pretty obvious that even the scale of our visible universe of 13,000,000,000,000,000,000,000,000,000 centimeters falls woefully short of being even a relatively stupendous number by comparison to infinity.

Infinity is as old as the Ancient Greeks. But even Aristotle (384 – 322 BCE) would only allow the integers (1,2,3,…) to be potentially infinite, but not actually infinite, in quantity. Since then, infinity or its cousin eternity, have become a part of our literary and religious vernacular when we mention something really, really, really….. big or old! Through literary and philosophical repetition, we have become comfortable with this idea in a way that is simply not justifiable.

Mathematics can define infinity very precisely, and even the mathematician Cantor (1845 – 1918) was able to classify ‘transfinite numbers’ as being either representing countable infinities or uncountable infinities. To the extent that mathematics is also used in physics, we inherit infinity as the limit to many of our calculations and models of the physical world. But the problem is that our world is only able to offer us the concept of something being very, very, very… big, like the example of the visible universe above.

If you take a sphere a foot across and place an ant on it, it crawls around and with a bit of surveying it can tell you the shape is a sphere with a finite closed surface. But now take this sphere and blow it up so that it is 1 million miles across. The ant now looks across its surface and sees something that looks like an infinite plane. Its geometry is as flat as a sheet of paper on a table.

In astronomy we have the same problem.

We make calculations and measurements within the 28 billion light years that spans our visible universe and conclude that the geometry of the universe is flat, and so geometrically it seems infinite, but the only thing the measurements can actually verify is that the universe is very, very, very large and LOOKS like its geometry is that of an infinite, flat, 3-dimensional space. But modern Big Bang cosmology also says that what we are seeing within our visible universe is only a portion of a larger thing that emerged from the Big Bang and ‘inflated’ to enormous size in the first microseconds.  If you identify our visible universe out to 14 billion light years as the size of the period at the end of this sentence, that larger thing predicted by inflation may be millions of miles across at the same scale. This is very, very big, but again it is not infinite!

Going the other way, the current best theoretical ideas about the structure of the physical world seems to suggest that at some point near a so-called Planck scale of 0.0000000000000000000000000000000015 centimeters we literally ‘run out of space’. This mathematical conclusion seems to be the result of combining the two great pillars of all physical science, quantum mechanics and general relativity, into a single ‘unified’ theory.  The mathematics suggests that, rather than being able to probe the nature of matter and space at still-smaller scales, the entire edifice of energy, space, time and matter undergoes a dramatic and final change into something vastly different than anything we have ever experienced: elements that are beyond space and time themselves.  These ideas are captured in theories such as Loop Quantum Gravity and String Theory, but frankly we are still at a very early stage in understanding what this all means. Even more challenging is that we have no obvious way to make any measurements that would directly test whether physical reality simply comes to an end at these scales or not.

So on the cosmological scene, we can convincingly say we have no evidence that anything as large as ‘infinity’ exists because it is literally beyond our 14 billion light-year horizon of detection. The universe is simply not old enough for us to sample such an imponderably large realm. Advances in Big Bang cosmology can only propose that we live in an incomprehensively alien ‘multiverse’ or that we inhabit one miniscule dot in a vastly larger cosmos, which our equations extrapolate as infinity. Meanwhile, the world of the quantum hints that no infinitely-small structures exist in the universe, not even what we like to call space itself can be indefinitely sub-divided below the Planck scale.

In the end, it seems that infinity is a purely  mathematical ideal that can be classified by Cantor’s transfinite numbers manipulated symbolically, and thought about philosophically, but is never actually found among the objects that inhabit our physical world.

Now let’s go back to the issue of space after the relativity revolution and try to make sense of where we stand now!

Check back here on Monday, December 19 for the next installment!