It has been over a year since I published my book on how to build DIY magnetometers that can detect geomagnetic storms. The $8.00 B/W book ‘Exploring Space Weather with DIY Magnetometers‘, is available at Amazon by clicking [HERE]. It contains 146 pages with 116 illustrations and figures that describe six different magnetometers that you can build step-by-step for under $50.00.
Over the last year I have posted at my Astronomy Cafe blog, and at various LinkedIn groups, the magnetograms from my most sensitive magnetometers to show how well they capture the rapid changes of Earth’s magnetic field during a geomagnetic storm. Since I started posting these DIY magnetograms on Linkedin, they have received over 13,500 views so there seem to be a lot of teachers, amateur astronomers and space weather enthusiasts interested in my DIY technology.
On the NOAA Scale, these storms are stronger than G2 and are currently happening every month or so during the sunspot-maximum period. This blog is my Gallery of the storms I have detected so far. I also show the data for each storm event observed from the Fredericksburg Magnetic Observatory (FRD) located about 200 miles south of my suburban Maryland location. This will give you a sense of just how accurate my designs are compared to the far more expensive, professional-grade systems.
By the way, the July 14, 2023 magnetogram ‘spots’ shows what can be accomplished by a simple $5.00 soda bottle magnetometer if you follow a design with a laser pointer and a 7-meter projection distance as described in my book.
Ok…so here are the magnetograms in reverse chronological order starting from the most recent storms and working down the list to the earlier ones towards the end of 2023. I am only presenting the magnetograms and not a lot of supporting information about the circumstances of the storms themselves. For this information, visit the Spaceweather.com website and in the upper right corner of the webpage in the Archive area enter the date of the storm and you will be able to see a lot of info and even amateur photos of the resulting aurora themselves.
Blog 1: DIY Magnetometers for Studying Space Weather
Blog 2: The Great Storm of May 10, 2024.
Blog 3: The Minor Storm of May 13, 2024.
October 10-12, 2024, Major Kp=8-9, Great Aurora. FRD magnetic observatory plot (red) versus the RM3100 (black). Single-digit Kp index numbers on top row (from 2 to 9). The features that look like sudden ‘glitches’ at Kp=9, 8 and 7 seem to be very real and rapid changes in the D-component (angular displacement). 1000 units on the vertical axis corresponds to 200 arcseconds or 3.3-arcminutes variation.
August 12, 2024. Major Kp=8 storm. Green arrows are the Sq current variations. FRD (red) and RM3100 (black).
August 2, 2024 Kp=7 storm event. FRD(black) and RM3100 (blue).
June 23, 2024, Kp=8. Sq minima (arrows). Storm event (blue bar).
May 12, 2024, Kp=6 storm. FRD(red), RM3100 (black), Photo (blue), Hall (green).
May 10, 2024 Kp=8-9 major geomagnetic storm.
May 5, 2024 storm Kp=4-5. FRD(red), RM3100 (black)
March 23, 2024. Diurnal Sq dips (arrows) and a strong geomagnetic storm (hour 40). FRD data (red) and RM3100 data (black).
November 27, 2023. Minor Kp=6 storm at running UT of 83-86 . FRD data (yellow), RM3100 (grey), photoelectric magnetometer (orange), Hall sensor (blue)
November 5, 2023. A significant Kp=7 geomagnetic storm superposed on a few wobbles due to Sq current effects.
October 30, 2023. Three days of Sq variations and no geomagnetic storms. FRD data (red), RM3100 magnetometer (black), photoelectric magnetometer (blue), Hall effect magnetometer (orange).
July 14, 2023. Kp=4 geomagnetic storm (blue bar) with three cycles (yellow) of the diurnal Sq current. Red line = FRD data. Spots = soda bottle magnetometer.