Category Archives: Brain Research

Thinking Visually

Look at the two images  for a few minutes and let your mind wander.

What impressions do you get from the patterns of light and dark? If I were to tell you that the one at the top is a dark nebula in the constellation Orion, and the one on the bottom is a nebula in the Pleiades star cluster, would that completely define for you what you are experiencing…or is there something more going on?

Chances are that, in the top image you are seeing what looks like the silhouette of the head and shoulders of some human-like figure being lit from behind by a light. You can’t quite put your finger on it, but the image seems vaguely mysterious and perhaps even a bit frightening the more you stare at it.

The image on the bottom evokes something completely different. Perhaps you are connecting the translucence and delicacy with some image of a shroud or silken cloak floating in a breeze. The image seems almost ghost-like in some respects…spiritual

But of course this is rather silly” you might say. “These are interstellar clouds, light-years across and all we are doing is letting our imaginations wander which is not a very scientific thing to do if you want to understand the universe.” This rational response then tempts you to reach for your mouse and click to some other page on the web.

What has happened in that split second is that a battle has been fought between one part of your brain and another. The right side of your brain enjoys looking at things and musing over the patterns that it finds there. Alas, it cannot speak because the language centers of the brain live in the left cerebral hemisphere, and it is here that rules of logic and other ‘scientific’ reasoning tools exist. The left side of your brain is vocal, and talking to you right now. It gets rather upset when it is presented with vague patterns because it can’t understand them and stamp them with a definite emotion the way the right hemisphere can. So it argues you into walking away from this challenge of understanding patterns.

If you can suspend this indignation for a moment or two, you will actually find yourself thinking about space in a way that more nearly resembles how a scientist does, though even some scientists don’t spend much time thinking about space. This indifference has begun to change during the last 20 years, and we are now in the midst of a quiet revolution.

There are three child-like qualities that make for a successful scientist:

Curiosity. This is something that many people seem to outgrow as they get older, or if they maintain it as adults, it is not at the same undiluted strength that it was when they were a child.

Imagination. This is something that also wanes with age but becomes an asset to those that can hang on to even a small vestige of it. It is what ‘Thinking out of the box’ is all about.

Novelty. As a child, everything is new. As an adult we become hopelessly jaded about irrelevant experiences like yet another sunset, yet another meteor shower, yet another eclipse. In some ways we develop an aversion for new experiences preferring the familiarity of the things we have already experienced.

If you wish to understand what space is all about, and explore the patterns hidden in the darker regions of nature, you will have to re-acquaint yourself with that child within you. You will need to pull all the stops out and allow yourself to ‘play’ with nature and the many clues that scientists have uncovered about it. You will need to do more than read books by physicists and astronomers. They speak the language of the left-brain . They can help you to see the logical development of our understanding of space and the Void, but they can not help you internalize this knowledge so that it actually means something to you. For that, you have to engage your right-brain faculties, and this requires that you see the patterns behind the words that physicists and astronomers use. To do that, you will need to think in terms of pictures and other types of images. You will need to bring something to the table to help you make sense of space in a way that you have not been able to before. You will need to expand your internal library of visual imagery to help you find analogues to what physicists and astronomers are trying to describe in words and equations. These visual analogues can be found in many common shapes and patterns, some seen under unusual and evocative circumstances. Here are some evocative images that seem to suggest how space might be put together compliments of  a diatom, the painters Miro and Mondrian, dew on a spider web, and atoms in a tungsten needle tip!

Spider web covered with dew drops

Remember, the right brain uses ALL sensory inputs to search for patterns and to understand them. It even uses imaginary information, dreams, and other free-forms to decode what it is experiencing.  

My book ‘Exploring Quantum Space’ is a guidebook that will give you some of the mental tools you will need to make sense of one of the greatest, and most subtle, discoveries in human history. Space, itself, is far from being ‘nothing’ or merely a container for matter to rattle around within. It is a landscape of hidden patterns and activity that shapes our universe and our destiny. You cannot understand it, or sense the awe and mystery of its existence, by simply reading words and following a logical exposition of ‘ifs and thens’. You also have to experience it through evocative imagery and imagination. Space is such a different medium from anything we have ever had to confront, intellectually, that we need to employ a different strategy if we wish to understand it in a personal way. Once we do this, we will be reconnected with that sense of awe we feel each time we look at the night sky.

My next blog about Nothing introduces some of the other ideas and techniques that scientists use to think about the impossible!

 

Thinking about Nothing

Looking back at the millennia of model building and deduction that has occurred, not a century has gone by when the prevailing opinion hasn’t been that a perfectly empty vacuum is impossible.

Aristotle’s Aether blends seamlessly into the 19th century Ether. In this century, overlapping quantum waves and virtual particles have finally taken root as the New Ether, though it is now infinitely more ephemeral than anything Aristotle or Maxwell could have imagined. We have also seen how the Atomist School of ancient Greece reached its final vindication in the hands of 19th century scientists such as Boltzman. By the 20th century, the Atomist’s paradigm has even been extended to include not just the graininess of matter, but the possible quantum graininess of the vacuum and space itself. In the virtual particles that animate matter, we finally glimpse the world which Heinrich Hertz warned us about nearly a century ago when he said that we would eventually have to reach some accommodation with “invisible confederates” existing alongside what we can see, to make our whole model of reality more logically self-consistent.

Even by the start of the 21st Century, we have reached this accommodation only by shrugging our shoulders and honestly admitting that there are things going on in the world that seem to defy human intuition. What impresses me most about the evolution of our vision of the vacuum is that the imagery we find so potent today is actually in some sense thousands of years old.

It is difficult to imagine that humans would be drawn to the same understanding of physics and astronomy that we now enjoy if our brains had been wired only slightly differently. Without sight and mobility we could not form the slightest notion of 3-D space and geometry. This is what Kant spoke about, what Henri Poincare described at great length without the benefit of 20th century neuroscience, and what Jacob Bronowski described in his book The Origins of Knowledge and Imagination with the benefit of such knowledge. But the object of science is more than just making sense of our senses. It must also guide us towards a deeper understanding of the physical world. This understanding must be self-consistent, and independent of whether we are sensorially or neurologically handicapped. Mathematics as the premier language of physical model building, seems uniquely suited to providing us with an understanding of the physical world. Mathematics lets us see the world in a way that all of the other human languages do not.

If our mathematical understanding of nature is a product of mental activity, and this activity can be physically affected by the hard-wiring of our brain, how do we arrive at a coherent model of the physical world? Can we see in this process any explanation for why certain ideas in physics appear to be so historically tenacious?

It is commonly believed that in order for mathematics and the underlying logic to exist, at the very least a conscious language must be pre-existent to support it. This is the point of view expressed by Benjamin Whorf. But the thoughtful reflections by individuals such as Einstein, Feynman and Penrose point in a very different direction. Einstein once wrote a note to Jaques Hadamard prompted by Hadamard’s investigation of creative thinking,

“…The words of language, as they are written or spoken, do not seem to play any role in my mechanism of thought. The psychical entities which seem to serve as elements of thought are certain signs ( symbols ) and more or less clear images which can be voluntarily reproduced and combined…The above mentioned elements are, in my case, of visual and some muscular type…”

Roger Penrose echoes some of this same description in his book, The Emperor’s New Mind,

“…Almost all my mathematical thinking is done visually and in terms of non-verbal concepts, although the thoughts are quite often accompanied by inane and almost useless verbal commentary such as ‘that thing goes with that thing and that thing goes with that thing’..”

Freeman Dyson, one of the architects of modern QED had this to say about how Feynman did his calculations,

“…Dick was using his own private quantum mechanics that nobody else could understand. They were getting the same answers whenever they calculated the same problem…The reason Dick’s physics was so hard for ordinary people to grasp was that he did not use equations…Dick just wrote down the solutions out of his head without ever writing down the equations. He had a physical picture of the way things happen, and the pictures gave him the solutions directly with a minimum of calculation…It was no wonder that people who had spent their lives solving equations were baffled by him. Their minds were analytical; his was pictorial…”

In many instances, the conversion of abstract thinking into conventional language is seen as a laborious, almost painful process. Often words are inadequate to encompass the subtleties of the non-verbal, abstract ideas and their interrelationships. According to Penrose,

“I had noticed, on occasion, that if I have been concentrating hard for a while on mathematics and someone would engage me suddenly in conversation, then I would find myself almost unable to speak for several seconds”

In fact, abstract thinking is often argued to be a right-hemisphere function. Visual or pattern-related thinking and artistic talents are frequently coupled to this hemisphere, and since the language centers are in the left-hemisphere, with such a disconnect between language and abstract thinking, there is little wonder that theoreticians and artists find themselves tongue-tied in explaining their ideas, or are inclined to report that their work is non-verbal.

So the creation of sophisticated physical theories may involve a primarily non-verbal and visual-symbolic thinking processes, often manipulating patterns and only later, with some effort of will, translating this into spoken language or fleshing out the required mathematical details. Could this be why scientists, and artists for that matter have such difficulty in explaining what they are thinking to the rest of the population? Could this be why ancient philosophers managed to land upon archetypes for their Creation legends that seem familiar to us in the 20th century? The symbols that are used appear disembodied, and no amount of word play can capture all of the nuances and motivations that went into a particular interpretive archetypes, and make them seem compelling to the non-mathematician or non-artist. Feynman once wrote about the frustrating process of explaining to the public what goes on in nature,

“…Different people get different reputations for their skill at explaining to the layman in layman’s language these difficult and abstruse subjects. The layman then searches for book after book in the hope that he will avoid the complexities which ultimately set in, even with the best expositor of this type. He finds as he reads a generally increasing confusion, one complicated statement after another,… all apparently disconnected from one another. It becomes obscure, and he hopes that maybe in some other book there is some explanation…but I do not think it is possible, because mathematics is NOT just another language. Mathematics is a language plus reasoning…if you do not appreciate the mathematics, you cannot see, among the great variety of facts, that logic permits you to go from one to the other…”

If this is the mental frame used by some physicists to comprehend physics, it is little wonder that a great chasm exists between the lay person and the physicist in explaining what is going on. The task that even a physicist such as Freeman Dyson had in translating Feynman’s diagrammatic techniques into mathematical symbology, seems even more challenging knowing that Feynman may have had a whole other perspective on visualization via his apparent color-symbol synthesia. The equations below are the current best mathematical expression for the Standard Model in physics, which describes all known particles and fields excepting gravity.

Another feature of thinking that separates scientists and artists from everyone else seems to be the plasticity of the thinking process itself. Scientists flit from one idea to another until they arrive at a model that best explains the available data, although scientists can also get rooted to particular perspectives that are difficult to forget after decades of inculcation. The general adult population prefers a more stable collection of ideas and ‘laws’ which it can refer to over a lifetime.

Where does this all leave us?

The vacuum has been promoted to perhaps the most important clue to our own existence. The difficulty is that we lack a proper Rosetta Stone to translate the various symbolisms we use to describe it. The clues that we do have are scattered among a variety of enigmatic subjects which strain at our best intellectual resources to understand how they are linked together. Could it be that we are lacking an even more potent symbolic metaphor, and an internal non-verbal language, to give it life? Where would such a thing come from?

Spider web covered with dew drops

If we take our clue from how ideas in physics have emerged in the past, the elements of the new way of thinking may be hidden in some unexpected corner of nature. We may find an analogy or a metaphor in our mundane world which, when mixed with mathematical insight, may take us even closer to understanding gravity, spacetime and vacuum. It is no accident that string theory owes much of its success because it asks us to think about quantum fields as ordinary strings operating in an exotic mathematical setting. It is exciting to think that the essential form of the Theory of Everything could be this close to us, perhaps even lurking in a pattern we see, and overlook, in our everyday lives.

Much of this symbolic process may be performed sub-consciously, and only the form of dreams, insights or hunches seem to bring them into consciousness when the circumstances are appropriate. It is, evidently, the non-verbal and unconscious right hemisphere which experiences these ideas. Is there a limit to this process of symbolic thinking? At least a dozen times this century, physicists have had to throw up their hands over what to make of certain features of the world: the collapse of the wave function; quantum indeterminacy; particle/wave dualism; cosmogenesis. Some of these may eventually find their explanation at the next level of model building. Others such as the meaning of quantum indeterminacy and particle/wave dualism, seem to be here to stay.

In working with these contradictions, the human mind prefers the avenue of denial, you can almost hear your inner voice saying “Aw come on, quantum mechanics just can’t be that weird!” or a state of anxiety as the two hemispheres try to fabricate conflicting world models. Little wonder that we have particle/wave duality, the seeming schism between matter and energy, and a whole host of other ‘polar’ ideas in physics, as two separate minds try to resolve the universe into one model or another with the left one preferring time ordered patterns, and the right one, spatial patterns.

It is hard to believe that our brains can control what we experience of the objective world, but we need only realize that the brain actually blindsides us in a variety of subtle ways, from seeing a wider sensory world. The object of science, however, is to discern the shapes of objective laws in a way that gets to the universal elements of nature that are not coupled to a particular kind of brain circuitry. It doesn’t matter if all scientists have anasognosia and see the world differently in some consistent way, what counts is that they must still live by the laws of motion dictated by gravity and quantum mechanics.

Nils Bohr believed atoms are not real in the same sense as trees. The quantum world really does represent a different kind of reality than our apparently naive understanding of macroscopic reality implies. This being the case, we must first ask to what extent fields and the denizens of the quantum vacuum can be represented by any analogy drawn from the macroworld? We already know that the single most important distinguishing characteristic of atomic particles is their spin; far more so than mass or charge. Yet unlike mass and charge, quantum mechanical spin has ABSOLUTELY no analog in the macroscopic world. Moreover, fundamental particles cannot be thought of as tiny spheres of charged matter located at specific points in space. They have no surface, and participate in an infernal wave-like dance of probability, at least when they are not being observed. Yet despite this warning, we feel comfortable that we understand something about what reality is at this scale, in the face of these irreconcilable differences between one set of mental images and what experiments tell us over and over again. What is the true nature of the vacuum? How did the universe begin? I suspect we will not know the answer to these questions in your lifetime or mine, perhaps for the same reason that it took 3000 years for geometers to ‘discover’ non-Euclidean geometry.

At the present time we are faced with what may amount to only a single proof of the parallel-line postulate, unable to see our way through to another way of looking at the proof. There is also the very real worry that some areas of nature may require modalities of symbolic thinking beyond the archetypes that our brains are capable of providing as a consequence of their neural hard-wiring. Today, we have quantum field theory and its tantalizing paradoxes, much as the ancient geometers had their parallel-line postulate. We, like they, scratch the same figures in the sand over and over again, hoping to see the glimmerings of a new world view appearing in the shifting sands. At a precision of one part in a trillion, our quantum theories work too well, and seem to provide few clues to the new direction we must turn to see beyond them.

The primary arbiters we have at our disposal to decide between various interpretive schemes, experimental data, are not themselves in unending supply as the abrupt cancellation of the U.S. Superconducting Super Collider program in 1989 showed. It was replaced by the CERN Large Hadron Collider shown above, but even the LHC may not be large enough to access the new physics we need to explore to further our theories and understanding.

Whatever answers we need seem to be hidden, not in the low- energy world accessible to our technology, but at vastly higher energies well beyond any technology we are likely to afford in the next few centuries. It is easy to provide a jet plane with an energy of 100 billion billion billion volts — its energy of motion at a speed of a few hundred miles per hour, but it is beyond understanding how to supply a single proton or electron with the same energy. On the other hand, our internal symbolic thinking seems to lead us to similar interpretative schemes, and unconscious dualities which may only be a reflection of our own neural architecture, which we all share, and which has remained essentially unchanged for millennia. We visualize the vacuum in the same way as the Ancients did because we are still starting from the same limited collection of internal imagery. At least for some general problems, we seem to have hit a glass ceiling for which our current style of theory building seems to lead us to a bipolar and contradictory world populated by various dualities: matter/energy, space/time, wave/particle. When we finally do break through to a new kind of reality in our experiments, would we be able to recognize this event? Will our brains filter out this new world and show us only the ghostly shadows of contradictory archetypes cast upon the cave wall?

We have seen that many schemes have been offered for describing the essential difference between matter and empty space; many have failed. Theoreticians since Einstein have speculated about the geometric features of spacetime, and the structure of electrons and matter for decades. The growing opinion now seems to be that, ultimately, only the properties of space such as its geometry or dimensionality can play a fundamental role in defining what matter really is. In a word, matter may be just another form of space. If the essence of matter is to be found in the geometric properties of ’empty’ space, our current understanding of space will not be sufficient to describe all of matter’s possible aspects.

Near Death Experiences

A CBS News Survey in 2014  found that 3 in 4 Americans believe in an afterlife. A similar survey in the UK in 2009 found 1 in 2 believe in life after death and 70% believe in the existence of a human soul.

So pervasive is this belief that, amazingly, more Britons believe in life after death than believe in God! This belief in life-after-death is so fundamental to how humans see the world that a 2013 Pew Poll of Americans  found that 13% of athiests also believed in an afterlife!

Luigi Schiavonetti’s 1808 engraving of a soul leaving a body. (Credit: National Gallery of Victoria, Melbourne)

Of course, many will argue that once you are gone you are gone, but in that twilight moment in the minutes and seconds before death, people have been revived through heroic medical interventions and some but not all declare they have experienced ‘something’ absolutely remarkable.

Called Near Death Experiences, entire shelves of books have been written on this subject over the decades since the ground-breaking work of Ceila Green in 1968 and then popularized in 1975 by psychiatrist Raymond Moody. Extensive eye-witness accounts were recorded, classified and sorted into a small number of apparently archetypical scenarios such as tunnels of pure light; out of body experiences; meeting loved ones; indescribable love. According to a Gallup Poll about 3% of Americans claim to have had them.  There were early attempts by Duncan MacDougall in 1901 at detecting the exit of the soul from the body by carefully weighing the patient, but all failed, and were immediately explained by denying that the soul had any weight at all.

Scientists have largely refused to wade into this area of inquiry because, like many other human beliefs, there is enormous public resistance to scientists meddling in such cherished and highly personal ideas shared by virtually all humans, even some athiests! In a classic case of what psychologists call confirmation bias, there is nothing that science can say about this matter that would be trusted unless it lines up exactly to confirm what we have all made up our minds about, literally for millennia. That said, I myself, must tread very carefully as I write this blog because, frankly, those of you reading it have also made up your mind about the subject and I do not want to slap you in the face by disrespecting your fundamental core beliefs, which will always trump anything a scientist can tell you. Even my simple uttering of this disclaimer will be interpreted as me being a condescending scientist…or worse!

But I cannot help myself! I have been curious about this subject all my life, and any new insights I come across in my readings are like candy to my brain. So here goes!

NDEs are not a feature of any other organ than the brain because they involve visual perceptions, bodily sensations, and the knitting together of a story that is later told by the ‘traveler’. All of these are brain functions, so it is no wonder that those who study the clinical aspects of NDEs begin with what the brain is doing. Amazingly, you do not even have to be clinically ‘near death’ to experience them. All that is required is a deep conviction that you ARE dying to trigger them.

What could be a more compelling and simple idea than putting a dying person in a functional magnetic resonance imager (fMRI) or strapping an EEG net to their heads, and literally watching what the brain is doing during one of these events? Well, it would be a heinous experiment and an unwelcomed intrusion on a patient’s privacy, but nevertheless these things do happen accidentally. Cardiac patients who are more likely to die suddenly and be recovered are often monitored for other reasons prior to their NDE, and there are many other indirect ways to snoop on the brain to see what happens too.

We have already learned from fMRI studies that there is a specific brain region that allows you to have a sense of where your body is located in space. In an earlier blog I discussed how removing the stimulation of this normally very active region causes meditators to have the sensation of being ‘at-one’ with the universe. This state can also be reproduced at will through chemical manipulation. The region, when stimulated with an electrode, or during temporal lobe epilepsy, also produces the aura sensation that your Self is no longer anchored to your body in space during so-called Out-of-Body (OBE) events. So, an essential element of your body sense during an NDE can be traced to one specific brain region and whether it’s activity is stimulated or depressed. This region wins both ways because when its electrical activity is gone, you have one ‘cosmic’ sensation of leaving your body, and when it is over-stimulated you have the OBE sensation. As we know, death is the ultimate event that lowers brain activity, or temporarily elevates it in other places as blood flow catastrophically changes. We all have the same brains, so the real question is, why is it that EVERYONE doesn’t have a NDE?

It all seems to depend on how close you get to the precipice of never returning from the journey, and it is the closeness of your brain to this physiological edge that seems to trigger the events leading to this NDE experience. But we do not know for certain.

A 2011 Scientific American article summarized some of these elements announced by brain researchers Dean Mobbs and Caroline Watt.

OBE experiences can be artificially triggered by stimulating the right temporoparietal junction in the brain. Patients with Cotard or “walking corpse” syndrome believe they are dead. This is a condition caused by trauma to the parietal cortex and the prefrontal cortex. Parkinson’s disease patients have reported visions of ghosts. This condition involves abnormal functioning of dopamine, a neurotransmitter that can sometimes but not all the time evoke hallucinations. The common experience of reliving moments from one’s life can be tied to a neural circuit involving the locus coeruleus, which releases noradrenaline during stress and trauma. The locus coeruleus (shown below) is connected to brain regions that are involved with emotion and memory, such as the amygdala and hypothalamus. Finally, a number of medicinal and recreational drugs can mirror the euphoria often felt during NDEs, such as the anesthetic ketamine, which can trigger out-of-body experiences and hallucinations. These discussions of the neural basis for many of the separate elements to NBEs are now part of the official medical explanation in places such as the one found in Tim Newman’s 2016 article in Medical News Today.

Norepinephrine system (Credit: Patricia Brown, University of Cincinnati)

Beware, however, of other articles like the one in The Atlantic called ‘The Science of Near Death Experiences’. This 2015 popularization, written in the typical breezy style of newspaper reporters, also purported to summarize what we know about this condition. Sadly, the reporter spent most of the article interviewing those who experienced it and hardly any column space on actual scientific research. It was a typical ‘puff piece’ that offered nothing more than speculation and very self-serving and bias-affirming pseudoscience, along-side free plugs for many recent, lurid, books and movies about first-person accounts.

The bottom line is that NDEs are by no means common to people who think they are dying, and their incidence crosses many religious boundaries. They remain enormously powerful events that actually change the lives and even personalities of the survivors, and so they are not merely will-o-the-whisp hallucinations. We do know that their detailed descriptions follow specific cultural expectations for what the afterlife is like: a New Guinee tribesman will not describe the event the same way as a southern Evangelical.

We are only beginning to understand how our brains synthesize what we experience into the on-going story that is our personal reality, but we know from the evidence of numerous brain pathologies that this is a highly plastic process in which imagination and emotion blend with hard facts in a sometimes inseparable tapestry. Our senses are objectively known to be fallible in countless ways if left unattended, and how we interpret what we experiences is as much a logical process as a process of out-right confabulation. Like many other events in our lives, NDEs are seen as one experience that our brains work very hard to incorporate into a plausible story of our world. It is this story that through millions of years of evolution allows us to function as an integrated Self,  avoid being injured or eaten, and  propagate our genes to the next generation.

Isn’t it amazing that, against this backdrop of cognitive dissonance, sensory bias, emotional chaos, and evolutionary hard-wiring  we can create a workable story of who we are in the first place?

Check back here on Monday February 28 for my next blog!

2016: A Year Beyond Reason

Psychologists define Cognitive Dissonance as the anxiety (dissonance) felt when people are confronted with information that is inconsistent with their beliefs. If the dissonance is not reduced by changing one’s belief, the dissonance can result in restoring consonance through misperception, rejection or refutation of the information, seeking support from others who share the beliefs, and attempting to persuade others.

In other words, humans can often carry two completely conflicting ideas in their consciousness at the same time. This is a stressful condition, and to alleviate it, we resort to rejecting contrary information, or try to persuade others of the consistency of our viewpoint.

We saw a lot of this condition in 2016!

This is not some liberal psychological plot to disparage the far-right of our political spectrum, but an objective fact of how our brains work. Researchers using functional Magnetic Resonance Imaging (fMRI) have found that cognitive dissonance activated specific brain regions called the dorsal anterior cingulate cortex and the anterior insular cortex. They also found that the more the anterior cingulate cortex signaled a conflict, the more dissonance a person experiences. During decision-making processes where the participant is trying to reduce dissonance, activity increased in the right-inferior frontal gyrus, medial fronto-parietal region and ventral striatum, while activity decreased in the anterior insula. Researchers concluded that rationalization activity, where you are trying to reduce the stress caused by cognitive dissonance, may take place quickly (within seconds) without conscious deliberation, and that the brain may engage emotional responses in the decision-making process.

The problem is that CD leads to other kinds of things that are sometimes harder to discern objectively. Confirmation bias refers to how people read or access information that affirms their already established opinions, rather than referencing material that contradicts them. This bias is particularly apparent when someone is faced with deeply held beliefs, i.e., when a person has ‘high commitment’ to their attitudes. People display confirmation bias when they gather or remember information selectively, or when they interpret it in a biased way. The effect is stronger for emotionally charged issues and for deeply entrenched beliefs. People also tend to interpret ambiguous evidence as supporting their existing position.

We saw a lot of that, too, in 2016.

An interesting study of biased interpretation occurred during the 2004 U.S. presidential election and involved participants who reported having strong feelings about the candidates. They were shown apparently contradictory pairs of statements, either from George W. Bush, John Kerry or a politically neutral public figure. They were also given further statements that made the apparent contradiction seem reasonable. From these three pieces of information, they had to decide whether or not each individual’s statements were inconsistent. There were strong differences in these evaluations, with participants much more likely to interpret statements from the candidate they opposed as contradictory. The participants made their judgments while in an fMRI scanner that monitored their brain activity. As participants evaluated contradictory statements by their favored candidate, emotional centers of their brains were aroused. This did not happen with the statements by the other figures. The experimenters inferred that the different responses to the statements were not due to passive reasoning errors. Instead, the participants were actively reducing the cognitive dissonance induced by reading about their favored candidate’s irrational or hypocritical behavior.

The bottom line is that, thanks to evolution, we have been blessed with a brain that suffers from many different kinds of reasoning pathologies. These may have had survival value in the remote past for making quick judgments in our social groups, or mistaking a distant shadow for a tiger, but now they are liabilities in our far more rational world of science and technology. Scientists spend a lot of time trying to weed out CD and CB from their analyses, and the result is that for 400 years of observing Nature as dispassionately as we can, we have created a marvelously accurate model of our world.

Sadly, CD and CB have at the same time been used to manipulate voters and consumers, with amazing negative consequences. The dissonance is that we fully realize that we are being manipulated by biased information, yet we seem powerless to resist its sirean call. In the current election, voters supporting Trump steadfastly refused to use his frequent and documented lying as grounds for not trusting him.

Some of the worst cases of CD and CB occurred during the 2016 election, and psychologists will be writing papers about it for decades. It all comes down to how people were convinced not to vote in their own self-interest.

How is it that voters whos only insurance came from the ACA voted for a GOP ticket that promised to repeal it? How is it that so many students voted against the democratic candidate who promised to eliminate tuition? How is it that so many poor people voted for an aledged multi-billionaire whose lavish gold-plated lifestyle was the antithesis of a poor person’s lifestyle?  How is it that Clinton and Trump were placed on the same ‘untrustworthy’ pedestal, when evidence showed that Clinton played by the rules and released her income tax statements, while Trump ran a Trump University con job and withheld his?  How is it that Trump’s steadfast attacks against our own intelligence service to defend Putin and Assange are not met with more rejection and patriotic contempt by his followers?

In the end, Trump voters and Red States will be paying a disproportionate economic penalty for letting CD and CB get the better of their reasoning. But because we are all in this together for the next four years, the rest of us will also feel some of this dissonance as well as collateral damage as voters in the red states ask voters in the blue states to bail them out.

Check back here on Saturday, January 14 for the next installment!

Oops…One more thing!

After writing thirteen essays about space, I completely forgot to wrap up the whole discussion with some thoughts about the Big Picture! If you follow the links in this essay you will come to the essay where I explained the idea in more detail!

Why did I start these essays with so much talk about brain research? Well, it is the brain, after all, that tries to create ideas about what you are seeing based on what the senses are telling it. The crazy thing is that what the brain does with sensory information is pretty bizarre when you follow the stimuli all the way to consciousness. In fact, when you look at all the synaptic connections in the brain, only a small number have anything to do with sensory inputs. It’s as though you could literally pluck the brain out of the body and it would hardly realize it needed sensory information to keep it happy. It spends most of its time ‘taking’ to itself.

The whole idea of space really seems to be a means of representing the world to the brain to help it sort out the rules it needs to survive and reproduce. The most important rule is that of cause-and-effect or ‘If A happens then B will follow’. This also forms the hardcore basis of logic and mathematical reasoning!
But scientifically, we know that space and time are not just some illusion because objectively they seem to be the very hard currency through which the universe represents sensory stimuli to us. How we place ourselves in space and time is an interesting issue in itself. We can use our logic and observations to work out the many rules that the universe runs by that involve the free parameters of time and space. But when we take a deep dive into how our brains work and interfaces with the world outside our synapses, we come across something amazing.

The brain needs to keep track of what is inside the body, called the Self, and what is outside the body. If it can’t do this infallibly, it cannot keep track of what factors are controlling its survival, and what factors are solely related to its internal world of thoughts, feelings, and imaginary scenarios. This cannot be just a feature of human brains, but has to also be something that many other creatures also have at some rudimentary level so that they too can function in the external world with its many hazards. In our case, this brain feature is present as an actual physical area in the cerebral cortex. When it is active and stimulated, we have a clear and distinct perception of our body and its relation to space. We can use this to control our muscles, orient ourselves properly in space, walk and perform many other skills that require a keen perception of this outside world. Amazingly, when you remove the activity in this area through drugs or meditation, you can no longer locate yourself in space and this leads to the feeling that your body is ‘one’ with the world, your Self has vanished, and in other cases you experience the complete dislocation of the Self from the body, which you experience as Out of Body travel.

What does this have to do with space in the real world? Well, over millions of years of evolution, we have made up many rules about space and how to operate within it, but then Einstein gave us relativity, and this showed that space and time are much more plastic than any of the rules we internalized over the millennia. But it is the rules and concepts of relativity that make up our external world, not the approximate ‘common sense’ ideas we all carry around with us. Our internal rules about space and time were never designed to give us an accurate internal portrayal of moving near the speed of light, or functioning in regions of the outside world close to large masses that distort space.

But now that we have a scientific way of coming up with even more rules about space and time, we discover that our own logical reasoning wants to paint an even larger picture of what is going on and is happy to do so without bothering too much with actual (sensory) data. We have developed for other reasons a sense of artistry, beauty and aesthetics that, when applied to mathematics and physics, has taken us into the realm of unifying our rules about the outside world so that there are fewer and fewer of them. This passion for simplification and unification has led to many discoveries about the outside world that, miraculously, can be verified to be actual objective facts of this world.

Along this road to simplifying physics, even the foundations of space and time become players in the scenery rather than aloof partners on a stage. This is what we are struggling with today in physics. If you make space and time players in the play, the stage itself vanishes and has to somehow be re-created through the actions of the actors themselves .THAT is what quantum gravity hopes to do, whether you call the mathematics Loop Quantum Gravity or String Theory. This also leads to one of the most challenging concepts in all of physics…and philosophy.

What are we to make of the ingredients that come together to create our sense of space and time in the first place? Are these ingredients, themselves, beyond space and time, just as the parts of a chain mail vest are vastly different than the vest that they create through their linkages? And what is the arena in which these parts connect together to create space and time?

These questions are the ones I have spent my entire adult life trying to comprehend and share with non-scientists, and they lead straight into the arms of the concept of emergent structures: The idea that elements of nature come together in ways that create new objects that have no resemblance to the ingredients, such as evolution emerging from chemistry, or mind emerging from elementary synaptic discharges. Apparently, time and space may emerge from ingredients still more primitive, that may have nothing to do with either time or space!

You have to admit, these ideas certainly make for interesting stories at the campfire!

Check back here on Monday, December 26 for the start of a new series of blogs on diverse topics!

Is Space Real?

I take a walk to the store and can’t help but feel I am moving through something that is more than the atmosphere that rushes by my face as I go. The air itself is contained within the boundaries of the space through which I pass. If I were an astronaut in the vacuum of outer space, I would still have the sense that my motion was through a pre-existing, empty framework of 3-dimensions. Even if I were blind and confined to a wheelchair, I could still have the impression through muscular exertion that I was moving through space to get from my kitchen to my living room ‘over there’. But what is space as a physical thing? Of all the phenomena, forces and particles we study, each is something concrete though generally invisible: a field; a wave; a particle. But space, itself, seems to be none of these. WTF!

Spider web covered with dew drops

Way back in the early 1700s, Sir Isaac Newton proposed that space was an ineffable, eternal framework through which matter passed. It had an absolute and immutable nature. Its geometry pre-existed the matter that occupied it and was not the least bit affected by matter. A clever set of experiments in the 20th century finally demonstrated rather conclusively that there is no pre-existing Newtonian space or geometry ‘beneath’ our physical world. There is no absolute framework of coordinates within which our world is embedded. What had happened was that Albert Einstein developed a new way of thinking about space that essentially denied its existence!

Albert Einstein’s relativity revolution completely overturned our technical understanding of space and showed that the entire concept of dimensional space was something of a myth. In his famous quote he stressed that We entirely shun the vague word ‘space’ of which we must honestly acknowledge we cannot form the slightest conception. In the relativistic world we live in, space has no independent existence. “…[prior-geometry] is built on the a priori, Euclidean [space], the belief in which amounts to something like a superstition“. So what could possibly be a better way of thinking about space than the enormously compelling idea that each of us carries around in our brains, that space is some kind of stage upon which we move?

To understand what Einstein was getting at, you have to completely do away with the idea that space ‘is there’ and we move upon it or through it. Instead, relativity is all about the geometry created by the histories (worldlines) of particles as they move through time. The only real ‘thing’ is the collection of events along each particle’s history. If enough particles are involved, the histories are so numerous they seem like a continuous space. But it is the properties of the events along each history that determine the over-all geometry of the whole shebang and the property we call ‘dimension’, not the other way around.

This figure is an example where the wires (analogous to worldlines) are defining the shape and contours of a dimensional shape. There is nothing about the background (black) space that determines how they bend and curve. In fact, with a bit of mathematics you could specify everything you need to know about the surface of this shape and from the mathematics tell what the shape is, and how many dimensions are required to specify it!

Princeton University physicist Robert Dicke expressed it this way, “The collision between two particles can be used as a definition of a point in [space]…If particles were present in large numbers…collisions could be so numerous as to define an almost continuous trajectory…The empty background of space, of which ones knowledge is only subjective, imposes no dynamical conditions on matter.”

What this means is that so long as a point in space is not occupied by some physical event such as the interaction point of a photon and an electron, it has no effect on a physical process ( a worldline) and is not even observable. It is a mathematical ‘ghost’ that has no effect on matter at all. The interstitial space between the events is simply not there so far as the physical world based upon worldlines is concerned. It is not detectable even by the most sophisticated technology, or any inventions to come. It does not even supply something as basic as the ‘dimension’ for the physical world!

We should also be mindful of another comment by Einstein that “…time and space are modes by which we think and not conditions in which we live“. They are free creations of the human mind, to use one of Einstein’s own expressions. By the way, the 18th century philosopher Immanuel Kant also called the idea of ‘space’ an example of a priori knowledge that we are born with to sort out the world, but it is not necessarily a real aspect of the world outside our senses.

Like a spider web, individual and numerous events along a worldline define the worldline’s shape, yet like the spider web, this web can be thought of as embedded in a larger domain of mathematically-possible events that could represent physical events…but don’t. The distinction between these two kinds of points is what Einstein’s revolutionary idea of relativity provided physicists, and is the mainstay of all successful physical theories since the 1920s. Without it, your GPS-enabled cell phones would not work!

So what are these events? Simply put, according to Physicist Lee Smolin, they are exchanges of information, which are also the interaction points between one particle’s worldline and another particle’s world line. If you think at the atomic level, each time a particle of light interacts with (collides or is emitted by) an electron it generates an event. These events are so numerous the electron’s worldline looks like a continuous line with no gaps between the events. So the shape of one worldline, what we call its history, is a product of innumerable interactions over time with the worldlines of all other objects (photons etc) to which it can be in cause-and-effect contact.

Even though this new idea of space being a myth has gained enormous validity among physicists over the last century, and I can easily speak the language of relativity to describe it, personally, my mind has a hard time really understanding it all. I also use the mathematical theory of quantum mechanics to make phenomenally accurate predictions, but no Physicist really understands why it works, or what it really means.

Next time I want to examine how the history of a particle is more important than the concept of space in Einstein’s relativity, and how this explains the seeming rigidity of the world you perceive and operate within.

Check back here on Thursday, December 15 for the next installment!

Logic and Math

So here we have a brain whose association cortex works overtime to combine sensory information into a stream of relationships in space and time. In fact, you cannot shut off this process or stop the brain from constantly searching its sensory inputs for patterns, even when there are no patterns to be found!

The time domain is particularly interesting because it is here that we build up the ideas of cause-and-effect and create various rules-of-thumb that help us predict the future, find food, and many other activities. This specific rule-type association largely takes place in the dominant hemisphere of the brain (left side for right-handed people) which also has the speech center. Specifically, the frontal lobes are generally considered to be the logic and reasoning centers of the brain. So when the brain is talking to you, it also has easy access to logical tools of thinking. We also have a minor hemisphere (right-side for right-handed people) that specializes in pattern recognition, but it contains no language centers and is therefore mute. Its insights about the patterns that it finds in sensory data are totally overtaken by the constantly babbling left-hemisphere. All it can muster is that non-verbal feeling of ‘Eureka!’ you get  once in a while.

problemsolving

This sequence of brain scans shows the four stages of math problem solving from left to right: encoding (downloading), planning (strategizing), solving (performing the math), and responding (typing out an answer).

Anyway, brain researchers have done brain imaging studies to explore where math reasoning occurs. They found that, when mathematicians think about advanced concepts, the prefrontal, parietal, and inferior temporal regions of the brain become very active. But this activity didn’t also happen in brain regions linked to words. This means, as many mathematicians can tell you, mathematics is not related to the brain’s language centers. It is an entirely different way of communication. In other words, you can carry-out mathematical thinking without an internal voice speaking. It is an entirely non-verbal activity until you are interested in communicating your results to someone else. I know this myself when I am solving complex equations. Not a single conscious word is involved. Instead, I move my hands, squirm in my chair, and robotically step through the methods of solving the equations without any verbal prattle like ‘Ok…this goes over here and that goes down here and x moves to the other side of the equals sign’ …and so on. I keep telling the public that math is the language of science, but in fact it is not really a language at all. It’s like saying that oil is the language of painting a work of art! In fact, when you are proficient at mathematics, you are behaving like a concert violinist who does not think about each note she plays, but flows along on a trained sequence of steps that she learned. Her sequence of fine motor skills are stored in the cerebellum, but a mathematician’s skills are stored in an entirely different part of the brain.

Researchers have found a group of a few million cells located in a region called the inferior temporal gyrus. These cells seem to respond very strongly when you are doing concrete, numerical calculations like balancing your bank account, filling out your taxes, or plugging-in numbers in a complex equation to get an answer . So the brain does have discrete regions and clumps of neutrons that make mathematical reasoning possible. An entire hemisphere is dedicated to ‘logical analysis’, but specific locations allow you to work with this implicit logic in an entirely symbolic manner that resembles the language centers in the Broca’s and Wernicke areas, which facilitate speech and writing words.

So here we now have all the elements for creating a model of the outside world by using sensory data to find patterns in time, and to use these patterns to eventually deduce general mathematical If A then B logical statements about them that are entirely symbolic, and far more accurate than what the brain’s language centers can provide through its endless chatter.

The basis for all these deductions about the world outside the brain is a concrete understanding of what space and time are all about. We learn about space through our binocular vision, but also because our mobility allows us to move through space. Even with perfect stereo vision, you have no idea what those objects are that you are looking at unless you can literally walk over to them and appreciate their actual sizes, textures and other features. So our deep, personal understanding of 3-dimensional space comes about because we have mobility and stereo vision. But actual vision as a sense may not be that important after all. Echolocation used by bats and dolphins is not a visual decomposition of the world but an auditory one, processed to give back a 3-dimensional model of the world without vision, color or even the perception of black and white being involved.

Evidence from  brain-imaging experiments indicates that, when blind people read Braille using touch, the sensory data is being sent to, and processed in, the visual cortex. Using touch, they get a sense of space and the relative locations of the raised dots that form Braille letters . Although the information is processed in the visual cortex, their impression is not a visual,  but is instead a directly spatial one without the intermediary of vision to get them there!

Next time I will begin the discussion about how astronomers and physicists ‘envision’ space itself.

Check back here on Monday, December 12 for the next installment!

Mathematical Ability Revealed in Brain Scans, 2016, By Mindy Weisberger
http://www.livescience.com/54370-math-brain-network-discovered.html

Other related essays:
Your Brain on Math

How Do Blind People Picture Reality? By Natalie Wolchover
http://www.livescience.com/23709-blind-people-picture-reality.html

Rules-of-thumb

There are at least two basic ways that we create associations. The first is associations in space. The second is associations in time.

Associations in space include recognizing static objects like chairs, trees, cars and people. The reason this works so well is that we live in a world filled with many different kinds of more-or-less fixed objects so that two or more people can agree they have similar attributes.

Associations in time include musical tunes and sounds, or associating one thing (cause) with another thing in the future (effect). For many of these dynamic associations like music, two people with normal hearing senses hear the same sequence of notes in time and can agree that what they heard was a portion of a familiar song, which they may independently be able to name if they have heard it before and made the appropriate associations in memory. But your exact associations related to the song will be different than mine because I associate songs with episodes in my life that you do not also share. Remember, the brain tags everything with patterns of associations unique to the individual.

The human brain is adept at pattern recognition. It can dissect its sensory information and see patterns in space and time that it can then associate with abstract categories such as a chair or a bird, and even specific sub-categories of these if it has been adequately trained (at school, or by reading a book on ornithology!). An upside-down chair seen in the remote distance is recognized as a chair no matter what its orientation in the visual field. A garbled song heard on an iPhone in a loud concert hall, or a particular conversation between two people in a noisy crowd, can also be detected as a pattern in time and recognized. The figure shows some of the brain connection pathways identified in the Human Connectome Project that help to interpret sensory data as patterns in space and time.

brainmapping

Patterns in space let us recognize the many different kinds of objects that fill our world. In the association cortex, once these identifications have been made, they are also sent on to the language centers where they are tagged with words that can be spoken or read. Once this step happens, two individuals can have a meaningful conversation about the world beyond their bodies that the senses can detect. Of course when both people say they have a specific category of objects called Siamese cats, they are most certainly associating that name with slightly different set of events and qualities corresponding to their cat’s personalities , fur patterns, etc..

The next step is even more interesting.

Just as the brain generalizes a collection of associations in space to define the concept of ‘cat’, it can detect patterns in time in the outside world and begin to see how one event leads to another as a rule-of-thumb or a law of nature. If I drop a stone off a tall cliff, it will fall downwards to the valley below. If the sun rises and sets today, it will do so again tomorrow. There are many such patterns of events in time that reoccur with such regularity that they form their own category-in-time much as ‘cat’ and ‘chair’ did in the space context. ‘If I visit a waterhole with lots of animals, there is a good chance that tigers or lions may also be present’. More recently, ‘If I stick my finger in an unprotected electrical outlet, I will probably be electrocuted!’. This perception of relationships is one of cause-and-effect. It has been studied by neurophysiologists, and is due to stimulation of part of the cerebellum and the right hippocampus. These brain regions are both involved with processing durations in time.

Over the centuries and millennia, the patterns in time we have been able to discern about the outside world have become so numerous  we have to write them down in books, and also put our children through longer and longer training periods to master them. This also tells us something very basic about our world.

Instead of being a random collection of events, our physical world contains a basic collection of rules that follow a ‘logical’ If A happens then B happens pattern in time. Physicists call these relationships ‘laws’ and their particular patterns in time and space can be discerned from measurements and observations made of phenomena in the world outside our brains. The brain can also work with these laws symbolically and logically, not by describing them through the usual language centers of the brain, but through a parallel set of centers that make us adept at mathematical reasoning.

In my next blog, I will discuss how mathematics and logic are intertwined and help us think symbolically about our world.

Check back here on Friday, December 9 for the next installment!

Space, Time, and Causality in the Human Brain
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008651/

What the…!!!!

You would think that a scientist lives in a purely rational world, but sometimes even we fall victim to events that are hard to explain at the moment. Here are my two favorite, and involuntary, journeys into the world of altered states!

I have had three experiences that some sufferers of migraine headaches may know all too well. Suddenly from out of nowhere, you may see flashing or shimmering lights, zigzagging lines, or stars. Some people even describe psychedelic images. For me, each one came on suddenly and caused me a bit of consternation before I figured out what was going on!

migraine

Each time, I saw a jagged crescent-shaped light that drifted across my visual field. I did not have a migraine headache either before or after, since I do not suffer from these painful conditions. But the shape and behavior of the image was identical to such migraine auras.

Called scintillating scotomas by opthamologists, in my case the effect occurred in the same part of my visual field no matter where I moved my eyes, so I knew that something was going on way up in my brain to cause it, and not in my retinas, like the experience of having those pesky ‘floaters’. Instead, it is caused by what is termed a ‘cortical spreading depression’. This is literally a physical wave of hyperstimulation followed by neural inhibition, that spreads out from the visual cortex and into the surrounding association areas at a speed of about 5 millimeters per minute. The whole thing lasts less 60 minutes and is quite amazing and slightly painful to watch. If you are driving a car at the time, it is extremely distracting and even dangerous. My events began as a flickering spot that expanded into a nearly ring-like, zig-zag shape about half the size of my visual field before fading away.

You can find simulations of this phenomenon at the Wikipedia page.
https://en.wikipedia.org/wiki/Scintillating_scotoma

The second perceptual event that I have never forgotten was much more complex.

I woke up in the semi-darkness of my bedroom and could see the dim shapes of the furniture around me, but I absolutely could not move so much as an eyelash. My eyes were open, but felt like they were very dry and begging for me to blink to get some tears going to reduce the irritation. But that was not the thing that captured my attention. There, floating at arms-length was a bright visual scene about as big as a dinner plate that had a horse running around in a corral. As I watched, the initially very clear image became less and less distinct until it faded out completely. Within a few minutes, sounds began to flood back and I could again move around in a fully awake state.

I had this experience in my early-50s and it was never to reoccur. Now, I have had quite a few waking dreams in my life, where I woke up in a dream realizing where I was, then waking up a second time to the real world, but this was a completely different experience.I have searched the literature to look for an explanation, and come across discussions of waking dreams and lucid dreaming, but this event seems to be different. Unlike a lucid dream, I was not aware that I was dreaming as I was watching the visual scenery of the horse in the corral. Instead it did not seem like an unusual experience at all. My tendency towards scientifically analyzing my experiences did not kick-in. All I could do was watch and marvel at the event with a feeling of awe, and definitely not fear.The nearest I could find to my experience is the ‘Type 2 false awakening’ where ‘The subject appears to wake up in a realistic manner, but to an atmosphere of suspense.[…] The dreamers surroundings may at first appear normal, and they may gradually become aware of something uncanny in the atmosphere, and perhaps of unwanted [unusual] sounds and movements.’

There is also the phenomenon of sleep paralysis ‘in which an individual briefly experiences an inability to move, speak, or react. It is often accompanied by terrifying hallucinations to which one is unable to react due to paralysis, and physical experiences. These hallucinations often involve a person or supernatural creature suffocating or terrifying the individual, accompanied by a feeling of pressure on one’s chest and difficulty breathing.’

Well, there was nothing terrifying about my experience. In fact, it was extremely pleasurable and awe-inspiring!

In reflecting back on these events, I find myself delighted that I experienced them because sometimes you want to have experiences in life that are extremely unusual and hard to explain just to have something to think about other than the predictable day-to-day world. I’m sure there are detailed medical reasons for each of my apparitions, because they all are related to how my brain works. Our brains are amazing organs that work overtime to make sense of the world, but they are still fallible.The difference between passing a kidney stone and a minor hiccup in the brain, is that our kidneys are not conscious. But, any little innocent tweak to our brain physiology is immediately interpreted as a change in behavior or of our conscious experience of the world.

So the next time you experience something ‘odd’, don’t be too worried about it. Just sit back and try to enjoy the altered experience. In the end, it may only be a completely innocent, though inscrutable, brain hiccup!

In my next blog I will describe how a brain filled with complex associations manages to make sense of it all!

Check back here on Wednesday, December 7 for the next installment!

Ocular migraines:
http://www.healthline.com/health/causes-of-ocular-migraines#Overview1

False awakening:
https://en.wikipedia.org/wiki/False_awakening

Sleep paralysis:
https://en.wikipedia.org/wiki/Sleep_paralysis

What does it mean?

What happens to all this sensory information that gives you a concrete idea about the things that exist in your world?

We saw how the flow of sensory information at any one time is enormous. It starts out as separate streams of information that flow to specific brain regions as their first stop, but then after that the information radiates to many different regions in the brain where it gets mixed with our emotions, and even with other sensory information. This is a process that is called association, and a large volume of the brain is called the Association Cortex for that reason.

association

At first the auditory information called purring, is connected to other sensory information occurring at the same time, for instance, the feeling that something furry is brushing against your leg. These two pieces of information become associated with each other, especially if they are connected to a similar combination you experienced earlier, and which was associated in your language cortex as the sound of the word ‘cat’ or the written word ‘cat’. Communicating this information is then handled by Broca’s Area (speech generation ) and Wernicke’s Area (speech comprehension).

The brain creates meaning by associating sensory information with specific categories of past experience. Nothing can really be understood except through a complex process of being associated with other things you have experienced, or learned. It’s like some enormous, interlinked tapestry of connections, and adding a new bit of information is always about fitting it into what has already been experienced in some way. But if that were all that there is, we would simply be walking encyclopedias.

Most of us have senses that are pretty well-defined. For example, the optic nerve transmits what each eye’s retinas detect and passes this on to the visual cortex at the back of the head after some of this information is first linked by neurons to a small brain region called the suprachiasmatic nucleus and then on to the pineal gland (to detect the day-night cycle). It also connects with the thalamus where it gets associated with other sensory stimuli. The three types of retinal cone cells are tuned to slightly different wavelengths of light and send the usual neural signals along the optic nerve. The outside world actually has no color at all. Everything is decided by the wavelength of light, and this number does not include color information. But by the time the visual cortex and its related association cortex is finished processing the information from the cones, you have a definite internal sense of color being an intimate part of the world. This is, however, very different than seeing the world in black and white, which is actually a better representation of what the world looks like. Our retina also have rod cells that are very sensitive to light intensity at all visual wavelengths, but give you only a sense of a grey world!

By coding light frequency information as well as intensity, our eyes and brains over eons of evolution have ‘decided’ that this extra color information has survival value. It can help classify things in terms of specific frequency fingerprints. For example, a coral snake is deadly and a scarlet king snake is harmless. Their skins have yellow and red bands, and the rhyme ‘Red touch yellow, kills a fellow but red touch black is a friend of Jack’ helps you distinguish between the two. You would be dead if all you could see is black and white. In fact, the complex color selections seen in nature have actually co-evolved with color vision over millions of years. The scarlet king snake adapted a version of the color coding used by coral snakes to fool predators into thinking it was a poisonous snake!

Sometimes this process can be flawed. We all know about color blindness, which affects about 8% of men and 0.5% of women. This happens when one of the three cone cell populations in the retina do not work properly. There is no way for the brain to correct for this because the retina has eliminated an important color sense long before the information reaches the optic nerve and the visual cortex.
There is another sensory malady that is even more unusual. Called synesthesia, it is caused by synaptic connections between otherwise separate sensory channels. For instance, you might see letters of the alphabet as having distinct colors on the page, or associate a specific sound with a color, among dozens of other documented possibilities. It is actually much more common than you might suspect. Have you ever felt that numbers have a definite location in space, or that 1980 is ‘farther away’ than 1990? Studies of the brain show that these mixings happen because of cross-wiring of neurons in the brain, either due to genetics or due to training when you were very young.

So, it isn’t even true that everyone perceives the outside world in identical manners. This leads to differences in how each person categorizes events and their internal associations with other things we have experienced. So with all of these variations in exactly what a ‘cat’ is, how do we create models of the world that let us function and survive without having accidents and getting killed all the time?

In my next blog I will describe two very unusual, personal experiences that show how our experience of the world can be temporarily distorted.

Check back here on Monday, December 5 for the next installment!
Seeing Color: http://www.webexhibits.org/causesofcolor/1C.html