The Particle Desert

For the last 100 years physicists have built exotic “atom smashers” to probe the innermost constituents of matter. Along the way they created a breathtakingly elegant mathematical theory called the Standard Model that seems to explain all of the physics we see at the atomic scale. It describes how a collection of twelve fundamental matter particles (electrons, quarks neutrinos etc) generate three fundamental forces in Nature, and how these forces are related to twelve other particles called the gauge bosons. A final 25th particle, the Higgs boson, rounds out the ensemble and embues some of the 24 particles with that mystical property we call mass.

During all this time, teams of physicists working in the “data dumps” of billion-dollar colliders have sifted through terabytes of information to refine the accuracy of the Standard Model and compare its predictions with the real world. The predictions always seemed to match reality and push the testing of the Standard Model to still higher energies. But at the Large Hadron Collider at CERN, among the trillions of interactions studied up to energies of 13,000 GeV, no new physics has been seen in the furthest decimal points of the Standard Model predictions since 2012; not so much as a hint that something else has to be added to bring it back in line with actual data. It is a theory that appears not to be broken at energies over 1000 times higher than it was designed for!

In the history of all previous colliders beginning in the 1950s, something new has always been found to move the development of physic’s explanatory capabilities forward. In the 1970s it was the discovery of quarks. In the 1980s it was the W and Z0 particles, and even recently in 2012 it was the Higgs boson. All these particles were found below an energy of 200 GeV. But now, as the LHC has spent the last year at 13,000 GeV, a desperate mood has set in. No new particles or forces have been discovered in this new energy landscape.

Nada. Nothing. Zippo.

Most of the theories that go beyond the Standard Model provide ways to unify the strong force with the electromagnetic and weak forces. At some very high energy, they say, all three forces have the same strength, unlike their present circumstance where the strong nuclear force is 100 times as strong as the electromagnetic force. The predicted energy where this unification happens is about 1000 trillion GeV — the so-called grand unification theory (GUT) energy.

According to popular supersymmetry theory calculations, there should be a large population of new particles above an energy of 1000 GeV. Each a partner to the known 25 particles, but far more massive. Some of these particles, such as the neutralino, are even candidates for dark matter! Above the masses of these new supersymmetry particles, however, there ought to be no new particles to discover from perhaps 100, 000 GeV to the GUT energy of 1000 trillion GeV. They say that without this energy desert, any particles there would cause the proton to decay much faster than current limits predict.

So although it is a frustrating prospect that no new particles may exist in this desert, this is a vital feature of our physical world that literally prevents all matter (protons) from disintegrating! But unlike the Sahara Desert, where we can at least drive through it to get to a different world beyond, there are apparently no easily reachable oases of new particles along the way to which physicists can target new generations of expensive colliders.

It remains to be seen whether the results from the Large Hadron Collider after 2016 will confirm our greatest hopes or validate our worst fears. Either way, stay tuned for some exciting news headlines!


Return here on Thursday, February 9 for my next blog!