All posts by StenBlog

Relativity and Space

Psychologists and physicists often use a similar term to describe one of the most fundamental characteristics of humans and matter: The Story. Here, for example, is the timeline story for key events in the movie The Hunger Games.

Oliver Sacks, in his book ‘The Man Who Mistook His Wife for a Hat’ describes the case of Jimmy G who was afflicted with Korsakov’s Syndrome. He could not remember events more than a few minutes in the past, and so he had to re-invent his world every few minutes to account for new events. As Sacks notes ‘If we wish to know about a man, we ask ‘what is his story – his real, inmost story? – for each of us is a biography, a story..[and a] singular narrative, which is constructed, continually, unconsciously, by, through, and in us – through our perceptions, our feelings, our thoughts, our actions..and our narratives…we must constantly recollect ourselves’.

Physicist Lee Smolin, in his book ‘Three Roads to Quantum Gravity’ , describes the essential foundation of relativity as the ‘story’ about processes and not the things-as-objects.   “A marble is not an inert thing, it is a process…There are only relatively fast processes and relatively slow processes. And whether it is a short story or a long story, the only kind of explanation of a process  that is truly adequate is a story.”

In both cases, we cannot define an object, be it a human, a table, or an electron by merely describing its properties at one instant in time. We can only define an object in terms of a process consisting of innumerable events, which create the story that defines it. This is very obvious when we are talking about humans, but it also applies to every object in the universe.

In relativity, the history or ‘story’ of a process such as a football or a galaxy, consists of a series of events that are tied together by cause-and-effect to create the process that you see at any particular moment. These events include the interactions of one process with others that cumulatively create what you see as the history of the process at a particular moment. In relativity, we call this history of a process its worldline.

This is a worldline map (Credit Aaron Koblin / BBC)of airlines traveling to and from the United States. The lines give the history of each flight on the 2-d surface of Earth. Each worldline consists of a huge number of ‘hidden’ events contributed by each passenger! By carefully studying these worldlines you could mathematically deduce that Earth is a sphere.

What Einstein said is that only worldlines matter, because that is the only thing we have access to. Even better than that, we are only able to see that part of a processes that can be communicated to us by using light, which is the fastest signal we can ever use to transfer information. When we are ‘looking’ at something, like a car or a star, what we are actually doing is looking back along its history carried to us as information traveling by photons of light.

In an earlier essay, I mentioned how we do not see objects in space, but only the end points of a light ray’s history as, for example, it leaves the surface of an object (Event 1) arrives at dust mote along the way and was re-emitted (Event 2) to arrive at our retina, and cause a rod or a cone cell to fire (Event 3). Because these events are strictly determined by cause-and-effect, and travel times are limited by the speed of light, we can organize these events in a strict history for the object we viewed (which was in fact a ‘process’ in and of itself!).

So, what does this say about space? Space  is irrelevant, because we can completely define our story only in terms of the ‘geometry’ of these history worldlines and the causal connections between events on these worldlines, without any mention of space as a ‘background’ through which things move.

This leads to another problem.

Einstein’s new relativistic theory of gravity makes use of a convenient mathematical tool called 4-dimensional spacetime. Basically we live in a world with three dimensions of space and one dimension of time, making a 4-dimensional thing called spacetime. Without knowing, you live and work in 4-dimensions because there is nothing about you that does not ‘move’ in time as well as space from second to second. All physical process take place in 4 dimensions, so all theories of physics and how things work are necessarily statements about 4-dimensional things.

It is common to refer to gravity as a curvature in the geometry of this spacetime ‘fabric’, but we can just as easily talk about the curvature of worldlines defining gravity and not even bother with the idea of spacetime at all! Remember, when you look at an object, you are ‘just’ looking back through its history revealed by the network of photons of light.

So we have used a mathematical tool, namely spacetime, to make visualizing the curvature of worldlines easier to describe, but we now make the mistake of thinking that spacetime is real because we have now used the mathematical tool to represent the object itself. This is similar to what we did with the idea of Feynman Diagrams in the previous blog! As Lee Smolin says ‘When we imagine we are seeing into an infinite three-dimensional space, we are actually falling for a fallacy in which we substitute what we actually see [a history of events] for an intellectual construct [space]. This is not only a mystical vision, it is wrong.”

But what about infinity?

In my next essay I will discuss why infinity is probably not a real concept in the physical world.

 

Check back here on Friday, December 16 for the next installment!

Physicist Lee Smolin’s book ‘The Three Roads to Quantum Gravity’ discusses many of these ideas in more detail.

Is Space Real?

I take a walk to the store and can’t help but feel I am moving through something that is more than the atmosphere that rushes by my face as I go. The air itself is contained within the boundaries of the space through which I pass. If I were an astronaut in the vacuum of outer space, I would still have the sense that my motion was through a pre-existing, empty framework of 3-dimensions. Even if I were blind and confined to a wheelchair, I could still have the impression through muscular exertion that I was moving through space to get from my kitchen to my living room ‘over there’. But what is space as a physical thing? Of all the phenomena, forces and particles we study, each is something concrete though generally invisible: a field; a wave; a particle. But space, itself, seems to be none of these. WTF!

Spider web covered with dew drops

Way back in the early 1700s, Sir Isaac Newton proposed that space was an ineffable, eternal framework through which matter passed. It had an absolute and immutable nature. Its geometry pre-existed the matter that occupied it and was not the least bit affected by matter. A clever set of experiments in the 20th century finally demonstrated rather conclusively that there is no pre-existing Newtonian space or geometry ‘beneath’ our physical world. There is no absolute framework of coordinates within which our world is embedded. What had happened was that Albert Einstein developed a new way of thinking about space that essentially denied its existence!

Albert Einstein’s relativity revolution completely overturned our technical understanding of space and showed that the entire concept of dimensional space was something of a myth. In his famous quote he stressed that We entirely shun the vague word ‘space’ of which we must honestly acknowledge we cannot form the slightest conception. In the relativistic world we live in, space has no independent existence. “…[prior-geometry] is built on the a priori, Euclidean [space], the belief in which amounts to something like a superstition“. So what could possibly be a better way of thinking about space than the enormously compelling idea that each of us carries around in our brains, that space is some kind of stage upon which we move?

To understand what Einstein was getting at, you have to completely do away with the idea that space ‘is there’ and we move upon it or through it. Instead, relativity is all about the geometry created by the histories (worldlines) of particles as they move through time. The only real ‘thing’ is the collection of events along each particle’s history. If enough particles are involved, the histories are so numerous they seem like a continuous space. But it is the properties of the events along each history that determine the over-all geometry of the whole shebang and the property we call ‘dimension’, not the other way around.

This figure is an example where the wires (analogous to worldlines) are defining the shape and contours of a dimensional shape. There is nothing about the background (black) space that determines how they bend and curve. In fact, with a bit of mathematics you could specify everything you need to know about the surface of this shape and from the mathematics tell what the shape is, and how many dimensions are required to specify it!

Princeton University physicist Robert Dicke expressed it this way, “The collision between two particles can be used as a definition of a point in [space]…If particles were present in large numbers…collisions could be so numerous as to define an almost continuous trajectory…The empty background of space, of which ones knowledge is only subjective, imposes no dynamical conditions on matter.”

What this means is that so long as a point in space is not occupied by some physical event such as the interaction point of a photon and an electron, it has no effect on a physical process ( a worldline) and is not even observable. It is a mathematical ‘ghost’ that has no effect on matter at all. The interstitial space between the events is simply not there so far as the physical world based upon worldlines is concerned. It is not detectable even by the most sophisticated technology, or any inventions to come. It does not even supply something as basic as the ‘dimension’ for the physical world!

We should also be mindful of another comment by Einstein that “…time and space are modes by which we think and not conditions in which we live“. They are free creations of the human mind, to use one of Einstein’s own expressions. By the way, the 18th century philosopher Immanuel Kant also called the idea of ‘space’ an example of a priori knowledge that we are born with to sort out the world, but it is not necessarily a real aspect of the world outside our senses.

Like a spider web, individual and numerous events along a worldline define the worldline’s shape, yet like the spider web, this web can be thought of as embedded in a larger domain of mathematically-possible events that could represent physical events…but don’t. The distinction between these two kinds of points is what Einstein’s revolutionary idea of relativity provided physicists, and is the mainstay of all successful physical theories since the 1920s. Without it, your GPS-enabled cell phones would not work!

So what are these events? Simply put, according to Physicist Lee Smolin, they are exchanges of information, which are also the interaction points between one particle’s worldline and another particle’s world line. If you think at the atomic level, each time a particle of light interacts with (collides or is emitted by) an electron it generates an event. These events are so numerous the electron’s worldline looks like a continuous line with no gaps between the events. So the shape of one worldline, what we call its history, is a product of innumerable interactions over time with the worldlines of all other objects (photons etc) to which it can be in cause-and-effect contact.

Even though this new idea of space being a myth has gained enormous validity among physicists over the last century, and I can easily speak the language of relativity to describe it, personally, my mind has a hard time really understanding it all. I also use the mathematical theory of quantum mechanics to make phenomenally accurate predictions, but no Physicist really understands why it works, or what it really means.

Next time I want to examine how the history of a particle is more important than the concept of space in Einstein’s relativity, and how this explains the seeming rigidity of the world you perceive and operate within.

Check back here on Thursday, December 15 for the next installment!

Seeing with Mathematics

Our brain uses sensory data to sift for patterns in space and time that help us create a mental model of the world through which we can navigate and stay alive. At some point, this model of the external world becomes our basis for thinking symbolically and mathematically about it.

Mathematics is an amazingly detailed, concise and accurate way of examining the world to state the logical relationships we find there, but many physicists and mathematicians have been astonished about why this is the case. The physicist Eugene Wigner wrote an article about this in 1960 titled ‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’. In fact, since the enormous successes of Sir Isaac Newton in mathematically explaining a host of physical phenomena, physicists now accept that mathematics actually serves as a microscope (or telescope!) for describing things and hidden relationships we cannot directly experience. This amazing ability for describing relationships in the world (both real and imagined!) presents us with a new problem.

parabola

Mathematics is a symbolic way of describing patterns our world, and sometimes these symbolically-defined descriptions actually look like the things we are studying. For example, the path of a football is a parabola, but the equation representing its path, y(x), is also that of a parabolic curve drawn on a piece of paper. But what happens when the mathematical description takes you to places where you cannot see or confirm the shape of the object?

Mathematics is a tool for understanding the world and symbolically stating its many logical interconnections, but the tool can sometimes be mistaken for the thing itself. Here is a very important example that comes up again and again when physicists try to ‘popularize’ science.

In the late-1940s, physicist Richard Feynman created a new kind of mathematics for making very precise calculations about how light (photons) and charged particles (such as electrons) behave. His famous ‘Feynman Diagrams’ like the one below, are very suggestive of particles moving in space, colliding, and emitting light. This diagram, with time flowing from left to right, shows a quark colliding with an anti-quark, which generates a photon that eventually produces an electron and anti-electron pair.

feynman_qqgamee1

The problem is that this is not at all a ‘photograph’ of what is actually happening. Instead, this is a tool used for setting up the problem and cranking through the calculation. Nothing more. It is a purely symbolic representation of the actual world! You are not supposed to look at it and say that for the solid lines, ‘particles are like billiard balls moving on a table top’ or that the photon of light they exchange is a ‘wiggly wave traveling through space’. What these objects are in themselves is completely hidden behind this diagram. This is a perfect example of what philosopher Immanuel Kant was talking about back in the 1700s. He said that there is a behind-the-scenes world of noumena where the things-in-themselves (ding-an-sich) exist, but our senses and observations can never really access them directly. The Feynman diagram lets us predict with enormous precision how particles will interact across space and time, but hides completely from view what these particles actually look like.

Another example of how math lets us ‘see’ the world we cannot directly access is the answer to the simple question: What does an electron actually look like?

Since the 1800’s, electricity increasingly runs our civilization, and electricity is merely a measure of the flow of electrons through space inside a wire. Each of us thinks of electrons as tiny, invisible spheres like microscopic marbles that roll through our wires wicked fast, but this is an example of where the human brain has created a cartoon version of reality based upon our ‘common sense’ ideas about microscopic particles of matter. In both physics and mathematics, which are based upon a variety of observations of how electrons behave, it is quite clear that electrons can be thought of as both localized particles and distributed waves that carry the two qualities we call mass and charge. They emit electric fields, but if you try to stuff their properties inside a tiny sphere, that sphere would explode instantly. So it really does not behave like an ordinary kind of particle at all. Also, electrons travel through space as matter waves and so cannot be localized into discrete sphere-like particles. This is seen in the famous Double Slit experiment where electrons produce distinct wave-like interference patterns.

electronwave

So the bottom line is that we have two completely independent, mathematical ways of visualizing what an electron looks like, particles and matter waves, and each can facilitate highly accurate calculations about how electrons interact, but the two images (particle and wave – localized versus distributed in space) are incompatible with each other, and so we cannot form a single, consistent impression of what an electron looks like.

Next time we will have a look at  Einstein and his ideas about relativity, which completely revolutionized our common-sense understanding of space created by the brain over millions of years of evolution.

Check back here on Tuesday, December 13 for the next installment!

Logic and Math

So here we have a brain whose association cortex works overtime to combine sensory information into a stream of relationships in space and time. In fact, you cannot shut off this process or stop the brain from constantly searching its sensory inputs for patterns, even when there are no patterns to be found!

The time domain is particularly interesting because it is here that we build up the ideas of cause-and-effect and create various rules-of-thumb that help us predict the future, find food, and many other activities. This specific rule-type association largely takes place in the dominant hemisphere of the brain (left side for right-handed people) which also has the speech center. Specifically, the frontal lobes are generally considered to be the logic and reasoning centers of the brain. So when the brain is talking to you, it also has easy access to logical tools of thinking. We also have a minor hemisphere (right-side for right-handed people) that specializes in pattern recognition, but it contains no language centers and is therefore mute. Its insights about the patterns that it finds in sensory data are totally overtaken by the constantly babbling left-hemisphere. All it can muster is that non-verbal feeling of ‘Eureka!’ you get  once in a while.

problemsolving

This sequence of brain scans shows the four stages of math problem solving from left to right: encoding (downloading), planning (strategizing), solving (performing the math), and responding (typing out an answer).

Anyway, brain researchers have done brain imaging studies to explore where math reasoning occurs. They found that, when mathematicians think about advanced concepts, the prefrontal, parietal, and inferior temporal regions of the brain become very active. But this activity didn’t also happen in brain regions linked to words. This means, as many mathematicians can tell you, mathematics is not related to the brain’s language centers. It is an entirely different way of communication. In other words, you can carry-out mathematical thinking without an internal voice speaking. It is an entirely non-verbal activity until you are interested in communicating your results to someone else. I know this myself when I am solving complex equations. Not a single conscious word is involved. Instead, I move my hands, squirm in my chair, and robotically step through the methods of solving the equations without any verbal prattle like ‘Ok…this goes over here and that goes down here and x moves to the other side of the equals sign’ …and so on. I keep telling the public that math is the language of science, but in fact it is not really a language at all. It’s like saying that oil is the language of painting a work of art! In fact, when you are proficient at mathematics, you are behaving like a concert violinist who does not think about each note she plays, but flows along on a trained sequence of steps that she learned. Her sequence of fine motor skills are stored in the cerebellum, but a mathematician’s skills are stored in an entirely different part of the brain.

Researchers have found a group of a few million cells located in a region called the inferior temporal gyrus. These cells seem to respond very strongly when you are doing concrete, numerical calculations like balancing your bank account, filling out your taxes, or plugging-in numbers in a complex equation to get an answer . So the brain does have discrete regions and clumps of neutrons that make mathematical reasoning possible. An entire hemisphere is dedicated to ‘logical analysis’, but specific locations allow you to work with this implicit logic in an entirely symbolic manner that resembles the language centers in the Broca’s and Wernicke areas, which facilitate speech and writing words.

So here we now have all the elements for creating a model of the outside world by using sensory data to find patterns in time, and to use these patterns to eventually deduce general mathematical If A then B logical statements about them that are entirely symbolic, and far more accurate than what the brain’s language centers can provide through its endless chatter.

The basis for all these deductions about the world outside the brain is a concrete understanding of what space and time are all about. We learn about space through our binocular vision, but also because our mobility allows us to move through space. Even with perfect stereo vision, you have no idea what those objects are that you are looking at unless you can literally walk over to them and appreciate their actual sizes, textures and other features. So our deep, personal understanding of 3-dimensional space comes about because we have mobility and stereo vision. But actual vision as a sense may not be that important after all. Echolocation used by bats and dolphins is not a visual decomposition of the world but an auditory one, processed to give back a 3-dimensional model of the world without vision, color or even the perception of black and white being involved.

Evidence from  brain-imaging experiments indicates that, when blind people read Braille using touch, the sensory data is being sent to, and processed in, the visual cortex. Using touch, they get a sense of space and the relative locations of the raised dots that form Braille letters . Although the information is processed in the visual cortex, their impression is not a visual,  but is instead a directly spatial one without the intermediary of vision to get them there!

Next time I will begin the discussion about how astronomers and physicists ‘envision’ space itself.

Check back here on Monday, December 12 for the next installment!

Mathematical Ability Revealed in Brain Scans, 2016, By Mindy Weisberger
http://www.livescience.com/54370-math-brain-network-discovered.html

Other related essays:
Your Brain on Math

How Do Blind People Picture Reality? By Natalie Wolchover
http://www.livescience.com/23709-blind-people-picture-reality.html

Rules-of-thumb

There are at least two basic ways that we create associations. The first is associations in space. The second is associations in time.

Associations in space include recognizing static objects like chairs, trees, cars and people. The reason this works so well is that we live in a world filled with many different kinds of more-or-less fixed objects so that two or more people can agree they have similar attributes.

Associations in time include musical tunes and sounds, or associating one thing (cause) with another thing in the future (effect). For many of these dynamic associations like music, two people with normal hearing senses hear the same sequence of notes in time and can agree that what they heard was a portion of a familiar song, which they may independently be able to name if they have heard it before and made the appropriate associations in memory. But your exact associations related to the song will be different than mine because I associate songs with episodes in my life that you do not also share. Remember, the brain tags everything with patterns of associations unique to the individual.

The human brain is adept at pattern recognition. It can dissect its sensory information and see patterns in space and time that it can then associate with abstract categories such as a chair or a bird, and even specific sub-categories of these if it has been adequately trained (at school, or by reading a book on ornithology!). An upside-down chair seen in the remote distance is recognized as a chair no matter what its orientation in the visual field. A garbled song heard on an iPhone in a loud concert hall, or a particular conversation between two people in a noisy crowd, can also be detected as a pattern in time and recognized. The figure shows some of the brain connection pathways identified in the Human Connectome Project that help to interpret sensory data as patterns in space and time.

brainmapping

Patterns in space let us recognize the many different kinds of objects that fill our world. In the association cortex, once these identifications have been made, they are also sent on to the language centers where they are tagged with words that can be spoken or read. Once this step happens, two individuals can have a meaningful conversation about the world beyond their bodies that the senses can detect. Of course when both people say they have a specific category of objects called Siamese cats, they are most certainly associating that name with slightly different set of events and qualities corresponding to their cat’s personalities , fur patterns, etc..

The next step is even more interesting.

Just as the brain generalizes a collection of associations in space to define the concept of ‘cat’, it can detect patterns in time in the outside world and begin to see how one event leads to another as a rule-of-thumb or a law of nature. If I drop a stone off a tall cliff, it will fall downwards to the valley below. If the sun rises and sets today, it will do so again tomorrow. There are many such patterns of events in time that reoccur with such regularity that they form their own category-in-time much as ‘cat’ and ‘chair’ did in the space context. ‘If I visit a waterhole with lots of animals, there is a good chance that tigers or lions may also be present’. More recently, ‘If I stick my finger in an unprotected electrical outlet, I will probably be electrocuted!’. This perception of relationships is one of cause-and-effect. It has been studied by neurophysiologists, and is due to stimulation of part of the cerebellum and the right hippocampus. These brain regions are both involved with processing durations in time.

Over the centuries and millennia, the patterns in time we have been able to discern about the outside world have become so numerous  we have to write them down in books, and also put our children through longer and longer training periods to master them. This also tells us something very basic about our world.

Instead of being a random collection of events, our physical world contains a basic collection of rules that follow a ‘logical’ If A happens then B happens pattern in time. Physicists call these relationships ‘laws’ and their particular patterns in time and space can be discerned from measurements and observations made of phenomena in the world outside our brains. The brain can also work with these laws symbolically and logically, not by describing them through the usual language centers of the brain, but through a parallel set of centers that make us adept at mathematical reasoning.

In my next blog, I will discuss how mathematics and logic are intertwined and help us think symbolically about our world.

Check back here on Friday, December 9 for the next installment!

Space, Time, and Causality in the Human Brain
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008651/

What the…!!!!

You would think that a scientist lives in a purely rational world, but sometimes even we fall victim to events that are hard to explain at the moment. Here are my two favorite, and involuntary, journeys into the world of altered states!

I have had three experiences that some sufferers of migraine headaches may know all too well. Suddenly from out of nowhere, you may see flashing or shimmering lights, zigzagging lines, or stars. Some people even describe psychedelic images. For me, each one came on suddenly and caused me a bit of consternation before I figured out what was going on!

migraine

Each time, I saw a jagged crescent-shaped light that drifted across my visual field. I did not have a migraine headache either before or after, since I do not suffer from these painful conditions. But the shape and behavior of the image was identical to such migraine auras.

Called scintillating scotomas by opthamologists, in my case the effect occurred in the same part of my visual field no matter where I moved my eyes, so I knew that something was going on way up in my brain to cause it, and not in my retinas, like the experience of having those pesky ‘floaters’. Instead, it is caused by what is termed a ‘cortical spreading depression’. This is literally a physical wave of hyperstimulation followed by neural inhibition, that spreads out from the visual cortex and into the surrounding association areas at a speed of about 5 millimeters per minute. The whole thing lasts less 60 minutes and is quite amazing and slightly painful to watch. If you are driving a car at the time, it is extremely distracting and even dangerous. My events began as a flickering spot that expanded into a nearly ring-like, zig-zag shape about half the size of my visual field before fading away.

You can find simulations of this phenomenon at the Wikipedia page.
https://en.wikipedia.org/wiki/Scintillating_scotoma

The second perceptual event that I have never forgotten was much more complex.

I woke up in the semi-darkness of my bedroom and could see the dim shapes of the furniture around me, but I absolutely could not move so much as an eyelash. My eyes were open, but felt like they were very dry and begging for me to blink to get some tears going to reduce the irritation. But that was not the thing that captured my attention. There, floating at arms-length was a bright visual scene about as big as a dinner plate that had a horse running around in a corral. As I watched, the initially very clear image became less and less distinct until it faded out completely. Within a few minutes, sounds began to flood back and I could again move around in a fully awake state.

I had this experience in my early-50s and it was never to reoccur. Now, I have had quite a few waking dreams in my life, where I woke up in a dream realizing where I was, then waking up a second time to the real world, but this was a completely different experience.I have searched the literature to look for an explanation, and come across discussions of waking dreams and lucid dreaming, but this event seems to be different. Unlike a lucid dream, I was not aware that I was dreaming as I was watching the visual scenery of the horse in the corral. Instead it did not seem like an unusual experience at all. My tendency towards scientifically analyzing my experiences did not kick-in. All I could do was watch and marvel at the event with a feeling of awe, and definitely not fear.The nearest I could find to my experience is the ‘Type 2 false awakening’ where ‘The subject appears to wake up in a realistic manner, but to an atmosphere of suspense.[…] The dreamers surroundings may at first appear normal, and they may gradually become aware of something uncanny in the atmosphere, and perhaps of unwanted [unusual] sounds and movements.’

There is also the phenomenon of sleep paralysis ‘in which an individual briefly experiences an inability to move, speak, or react. It is often accompanied by terrifying hallucinations to which one is unable to react due to paralysis, and physical experiences. These hallucinations often involve a person or supernatural creature suffocating or terrifying the individual, accompanied by a feeling of pressure on one’s chest and difficulty breathing.’

Well, there was nothing terrifying about my experience. In fact, it was extremely pleasurable and awe-inspiring!

In reflecting back on these events, I find myself delighted that I experienced them because sometimes you want to have experiences in life that are extremely unusual and hard to explain just to have something to think about other than the predictable day-to-day world. I’m sure there are detailed medical reasons for each of my apparitions, because they all are related to how my brain works. Our brains are amazing organs that work overtime to make sense of the world, but they are still fallible.The difference between passing a kidney stone and a minor hiccup in the brain, is that our kidneys are not conscious. But, any little innocent tweak to our brain physiology is immediately interpreted as a change in behavior or of our conscious experience of the world.

So the next time you experience something ‘odd’, don’t be too worried about it. Just sit back and try to enjoy the altered experience. In the end, it may only be a completely innocent, though inscrutable, brain hiccup!

In my next blog I will describe how a brain filled with complex associations manages to make sense of it all!

Check back here on Wednesday, December 7 for the next installment!

Ocular migraines:
http://www.healthline.com/health/causes-of-ocular-migraines#Overview1

False awakening:
https://en.wikipedia.org/wiki/False_awakening

Sleep paralysis:
https://en.wikipedia.org/wiki/Sleep_paralysis

What does it mean?

What happens to all this sensory information that gives you a concrete idea about the things that exist in your world?

We saw how the flow of sensory information at any one time is enormous. It starts out as separate streams of information that flow to specific brain regions as their first stop, but then after that the information radiates to many different regions in the brain where it gets mixed with our emotions, and even with other sensory information. This is a process that is called association, and a large volume of the brain is called the Association Cortex for that reason.

association

At first the auditory information called purring, is connected to other sensory information occurring at the same time, for instance, the feeling that something furry is brushing against your leg. These two pieces of information become associated with each other, especially if they are connected to a similar combination you experienced earlier, and which was associated in your language cortex as the sound of the word ‘cat’ or the written word ‘cat’. Communicating this information is then handled by Broca’s Area (speech generation ) and Wernicke’s Area (speech comprehension).

The brain creates meaning by associating sensory information with specific categories of past experience. Nothing can really be understood except through a complex process of being associated with other things you have experienced, or learned. It’s like some enormous, interlinked tapestry of connections, and adding a new bit of information is always about fitting it into what has already been experienced in some way. But if that were all that there is, we would simply be walking encyclopedias.

Most of us have senses that are pretty well-defined. For example, the optic nerve transmits what each eye’s retinas detect and passes this on to the visual cortex at the back of the head after some of this information is first linked by neurons to a small brain region called the suprachiasmatic nucleus and then on to the pineal gland (to detect the day-night cycle). It also connects with the thalamus where it gets associated with other sensory stimuli. The three types of retinal cone cells are tuned to slightly different wavelengths of light and send the usual neural signals along the optic nerve. The outside world actually has no color at all. Everything is decided by the wavelength of light, and this number does not include color information. But by the time the visual cortex and its related association cortex is finished processing the information from the cones, you have a definite internal sense of color being an intimate part of the world. This is, however, very different than seeing the world in black and white, which is actually a better representation of what the world looks like. Our retina also have rod cells that are very sensitive to light intensity at all visual wavelengths, but give you only a sense of a grey world!

By coding light frequency information as well as intensity, our eyes and brains over eons of evolution have ‘decided’ that this extra color information has survival value. It can help classify things in terms of specific frequency fingerprints. For example, a coral snake is deadly and a scarlet king snake is harmless. Their skins have yellow and red bands, and the rhyme ‘Red touch yellow, kills a fellow but red touch black is a friend of Jack’ helps you distinguish between the two. You would be dead if all you could see is black and white. In fact, the complex color selections seen in nature have actually co-evolved with color vision over millions of years. The scarlet king snake adapted a version of the color coding used by coral snakes to fool predators into thinking it was a poisonous snake!

Sometimes this process can be flawed. We all know about color blindness, which affects about 8% of men and 0.5% of women. This happens when one of the three cone cell populations in the retina do not work properly. There is no way for the brain to correct for this because the retina has eliminated an important color sense long before the information reaches the optic nerve and the visual cortex.
There is another sensory malady that is even more unusual. Called synesthesia, it is caused by synaptic connections between otherwise separate sensory channels. For instance, you might see letters of the alphabet as having distinct colors on the page, or associate a specific sound with a color, among dozens of other documented possibilities. It is actually much more common than you might suspect. Have you ever felt that numbers have a definite location in space, or that 1980 is ‘farther away’ than 1990? Studies of the brain show that these mixings happen because of cross-wiring of neurons in the brain, either due to genetics or due to training when you were very young.

So, it isn’t even true that everyone perceives the outside world in identical manners. This leads to differences in how each person categorizes events and their internal associations with other things we have experienced. So with all of these variations in exactly what a ‘cat’ is, how do we create models of the world that let us function and survive without having accidents and getting killed all the time?

In my next blog I will describe two very unusual, personal experiences that show how our experience of the world can be temporarily distorted.

Check back here on Monday, December 5 for the next installment!
Seeing Color: http://www.webexhibits.org/causesofcolor/1C.html

A Stroke of Insight

Once the firehose of sensory information reaches the brain, a bewildering process of making sense of this data begins. The objective is to create an accurate internal model of the world that you can base your next decisions upon. To do this, all of the many bits of data flowing along the sensory neurons have to be knitted together somehow. Thanks to the unfortunate circumstances of minor strokes, brain researchers have been able to track down many of the important steps in this information processing.

brainspecial

You might have heard of the experiences of limb amputees who, for a time, experience the ‘phantom limb’ effect. The neurons having been severed still report back to the brain that their stimulation means the limb still exists, and for a period of time the amputee has to deal with the ghost limb that is not really there. In another bizarre situation, a stroke victim has a perfect understanding that their left arm belongs to them, but insists that their right arm belongs to a relative living 1000 miles away. This malady is called asomatognosia by neurophysiologists.

From many studies of how pinpoint strokes affect brain function, neuroanatomists have identified specific regions of the brain that allow us to integrate our sensory information and create a coherent model of the outside world as it exists in space and time. The first thing the brain has to do is to have a ‘sense’ of its own body and how it is located in space. It also has to identify this ‘self’ as being different from that of other people. If it cannot do this accurately, it cannot decide how to move in space, anticipate the consequences of that movement, or how to anticipate and empathize with the actions of other people. Nearly all of this activity seems to be relegated to a single area in the brain.

The temporoparietal junction (TPJ) takes information from the limbic system (emotional state) and the thalamus (memory) and combines it with information from the visual, hearing and internal body sensory systems to create an integrated internal model of where your body is located in space. The TPJ has left and right ‘lobes’ that control your ability to pay attention (right) and to anticipate other people’s emotions and desires (left). Patients with schizophrenia have abnormal levels of stimulation in the TPJ and cannot discern the intentions of other people. Stimulation of the right TPJ by placing electrodes in unesthetized patients leads to out-of-body experiences, schizophrenic behavior, and the phantom limb effect. The right TPJ tries to create a coherent body image from many different, and sometimes contradictory sensory inputs. When this process breaks down because the contradictory information is too strong to inhibit or ignore, you experience that you actually have two distinct bodies in space. This seems to be the direct, neural basis for out-of-body experiences.

But there is an even stranger brain region whose stimulation leads to an error in deciding where the body and self ends in space, and where the outside world begins.

The posterior cingulate body plays a huge role in self-location and body ownership. What this means is that we experience our body as having a definite location in space, and that this location is where you, the ‘Self’ is located. Strokes in this region cause asomatognosia patients not to recognize a limb as belonging to them. But you don’t have to be a stroke victim to experience this dislocation of body and self.

If you sit at a table facing a barrier that lets you see an artificial, life like right hand but not your real right hand, and you rhythmically stroke the real hand, eventually your brain gets fooled into believing that the artificial right hand is actually yours. If someone suddenly stabs the artificial hand, you will actually jump reflexively as though, for just an instant, the brain got confused about which was your real right hand being attacked!

The Posterior Superior Parietal Lobule gives us a sense of the boundary between our physical body and the rest of the world. When activity in this brain region is reduced, the individual seems to lose a sense of where their body ends and the rest of the world begins. The feeling is one of having ‘merged with the universe’ and your body is in some way infinite. Mindfulness practices such as meditation can modify the stimulation of this region and give the practitioner exactly this dramatic experience.

So you see, once sensory data gets to the brain, it is in for an amazing ride through many brain regions that help us build up the person or self that we feel we are through space and time.

By the way, for a fascinating introduction to these topics, read V.S. Ramachandran and Sandra Blakeslee’s book ‘Phantoms in the Brain: Probing the mysteries of the human mind’

Here is an interesting 2013 research paper in the journal Frontiers in Psychology ‘Alterations in the sense of time, space, and body in the mindfulness-trained brain: a neurophenomenologically-guided MEG study’ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847819/

The connection between meditation and brain region function and stimulation is covered in this article: Mindfulness Practices and Meditation. https://neurowiki2012.wikispaces.com/Mindfulness+Practices+and+Meditation

But now let’s consider how the brain actually makes its models.

Check back here on Friday, December 2 for the next installment!

Stranger than Science?

Most of my childhood was spent in a wonderful twilight of comprehension between my imaginary world and the world I was being introduced to in school, and through my many science-related hobbies. I make no apologies for this as an adult scientist, and consider my tenure in this wonderful place, time well spent in nurturing the person I am today.

What the ....

Even now, as I look back over 64 years of amazing life, there remain a handful of events that standout, and for which I have no good explanation…nor do I chose to seek for one!

The first of these was in 9th grade, when as I was walking home from school, leaping one-by-one up the 52 stairs from Galindo Street to Carrington in Oakland. Suddenly, my breathless and speedy stride was broken by the sight of a paperback book tossed to the side of one of the steps. I picked it up and noted the author was Franck Edwards; the title of the book was ‘Stranger than Science’. For the next few days I stayed up late into the night reading about spontaneous human combustion, strange disappearances, and a whole host of other ‘documented’ occurrences that science could not explain. So, where did the book come from and why did I happen upon it at exactly that moment?

The next event happened while I was visiting my cousins Dan and Annika at their summer home in Sweden. Dan and I decided to take his moped out for a ride down a rocky deserted road, several miles from their house. It was an overcast swampland scene with seagulls screeching overhead. We randomly stopped and I hopped off to turn over some large stones, looking for whatever might be under them. A salamander? A nest of peculiar insects? After a few tries, and under the fourth stone, there laid a 5-krown paper note. What were the odds of finding Swedish paper money out in the middle of nowhere? Who had put it there? Swedish lore is rife with tales of trolls who live under rocks and stash their valuables there. Sounds like a good explanation to me!

In college, while camping in the high country of Yosemite near Merced Lake, I was shocked to hear, out of nowhere, a peculiar and powerful musical sound. Two deep-base notes rang out from the distant deserted, alpine valley where a thunder storm had been in progress, and for 20 seconds I was entertained in the twilight as these two tones switched back and forth, never changing their pitch in-between cycles. Had the sounds from the thunder been somehow been converted to these pure tones by reflection from canyon walls?

Also in college, I was again standing in the twilight, gazing up at the UC Berkeley urban sky, when eight pinpoint lights forming a V-shape, glided silently by over-head at an apparent speed that eliminated airplane landing lights, or a flock of birds. The shape spanned a dozen full-moons, but made absolutely no sound at all. My first and only ‘UFO’ sighting?

Finally in graduate school at Harvard, I was spending a few days with my brother Richard’s family at their home some two months after his wife, my sister-in-law Darlene, had died. I was still in shock over losing my dear sister, and was spending the night that Christmas in her former home. At about 3:00 am I was awaken by some thing just beyond my view, stroking my cheek. To this day I have poetically interpreted it as my sister-in-law reaching out to console me over my grief in losing her.

Given some thought, we all have accumulated over our lifetimes unusual anecdotes like this, that could not be readily explained because in each instance we did not have the complete set of facts at our disposal from which to form a plausible explanation. In most cases, we even refuse to delve too deeply into them because we have discovered it is rather fun and comforting not to actually know what happened!

Not long after I received my PhD in astronomy in 1982, I happened upon another book that captured my adult imagination. William Corliss (1926-2011) had published the quotidian ‘Handbook of Unusual Natural Phenomena’ in which he had culled from a variety of reputable scientific journals, descriptions of unusual events such as strange sounds, inexplicable lights, and other phenomena. I read it from cover to cover, with both the practiced gaze of a freshly-minted scientist, and that 10-year-old that I used to be. I still like to turn its pages from time to time and read 19th century reports of ball lightning, earthquake lights, unusual aurora and other things that probably do have a rational explanation. But what to I make of ‘ghost lights’, ‘rains of frogs’ and other things that stir up human emotions of deep mystery and ‘things going bump in the night’?

A future science will no doubt find explanations for them, but for now I remain happy that they are a part of my world, though not currently explained. In the end, we do have to leave SOMETHING for our children to explore!

In the next blog, I will describe how strokes have helped neuroscientists understand how human brains create consistent explanatory models of the world, and how this process can break down with some rather unbelievable results!

Check back here on Tuesday, November 29 for the next installment!

Aurora picture Credit Tommy Richardsen – https://apod.nasa.gov/apod/ap150504.html

Making Sense of the Senses!

If you are trying to understand the world beyond your body, it’s probably a good idea to also understand just how your observations are being made and then interpreted. Our brains process a lot of sensory information, but interpreting it is a lot more fluid and fallible than you might believe!

First of all, there is no ‘person’ inside your head looking through a TV screen into the outside world through your eyes.

Sensory information is received in small bits of impulses traveling along neurons. A visual scene dissolves into clusters of rod and cone cells in the retina that sense edges, colors, and other elemental features of what you are looking at. These qualities are not stored in the visual cortex adjacent to each other like pixels in a picture, but grouped together by thematic features. It is only at the next level of neural connections (called synapses) that associations between areas in the visual cortex are made in order to identify archetypical objects such as cars, houses and, yes, grandmothers! These neurons also make many different synaptic connections along the way to help process the information flow long before you perceive it as an integrated whole. This figure shows, for example, a few of the neural pathways that connect the visual cortex regions ( V1, V2, V3) all the way to the prefrontal cortex (PF).

visualcircuit
What you see is sometimes not always what you get. Your neural networks may actually remove information from your conscious perception of the world. A frog’s retinas only pass information to its brain when something is moving in the visual field. Its brain doesn’t even GET the basic information that things like perfectly edible flies are standing still on a nearby leaf! Only when they move does the retina communicate to the frog’s brain that there is a fly ‘out there’ to go after and eat. You know that ‘blind spot’ in your eye? The brain fills it in with fabricated information so that you do not see a black spot the size of a quarter at arms-length. Our brain is actually lying to our conscious perception of the world!

Second of all, many of the neurons at the lowest level make connections to the limbic system and are ‘tagged’ with many different emotional states .

The most important of these taggings being the self-preservation, fight-or-flight response. For example, there is very high survival value to quickly tagging a distant shadow as either a predator or a non-predator. Not all shadows will be a lion, but in the grand scheme of evolution even a rule-of-thumb that works only 10% of the time can mean the difference between vital genes being passed on to the next generation or not. This identification has to be made very quickly before you have time to logically consider all the non-threatening possibilities for what the shadow might actually be.

This tendency towards making snap decisions that over-ride time-consuming reasoning has high survival value and is hard-wired into our brains, but it also screws things up as we apply the same data to rationally understanding the world around us. The best case of this is in the eyewitness reporting of crimes. Eyewitnesses are almost always in a highly-emotional state, and great care has to be taken in the courtroom to compare accounts and distill from them the actual facts. Sometimes eyewitness accounts have to be thrown out entirely.

Another big problem with the brain is that it has a nasty habit of using the same neural circuits to handle different tasks. This leads to some extremely crazy situations.

We all like to visually imagine ourselves in different situations as we day dream, read a good novel, or are fast asleep in bed. These visual images and other imagined relationships often use the same circuitry needed for carefully examining the outside world and making sense of it. What this means is that there is actually a neural connection between our imagined world and the hard-rock world we live in. Most people can easily distinguish the difference, but sometimes our imagination, dosed with the limbic system’s associations, can confuse what we are actually seeing or experiencing, not based on an actual experience, but based instead on an imagined one. You can actually improve some elements of sports performance by internally visualizing in detail the actions you want to perform. It seems that imagined activity can train the cerebellum almost as well as the actual act!

Our brain and sensorium have to work together to identify patterns that help us survive, or at least not get injured too badly. There can be some sloppiness in this process that allows a few people to misunderstand gravity and walk out a 35th floor window, but we have evolved so that this is a very rare occurrence. But still, there are many ways in which human perceptions can be misinterpreted or even distorted by the brain as it tries to process billions of bits of information every second against a wash of emotions and other states-of-mind.

In the next blog, I will describe how strokes have helped neuroscientists understand how human brains create consistent models of the world, and how this process can break down with some rather unbelievable results!

Check back here on Sunday, November 27 for the next installment!